This study evaluated the carriage of AmpC and extended-spectrum beta-lactamase (ESBL) genes and associated plasmids in faecal bacteria of Canadian corvids. Faecal samples from 449 birds in five roosting sites across Canada were analyzed using selective media, screening for AmpC and ESBL genes by PCR, and sequencing. Genomic relatedness was determined by PFGE and MLST. Plasmid mobility was studied by conjugation and transformation experiments, followed by plasmid typing. In total, 96 (21%, n = 449) cefotaxime-resistant Escherichia coli and three (0.7%) Klebsiella pneumoniae isolates were identified. ESBL genes blaCTX-M-1 (n = 3), blaCTX-M-14 (n = 2), blaCTX-M-32 (n = 2) and blaCTX-M-124 (n = 1) were detected in eight E. coli isolates, whereas blaSHV-2 (2) was found in two K. pneumoniae. E. coli isolates contained blaCMY-2 (n = 83) and blaCMY-42 (n = 1). The high genetic diversity of the isolates and presence of clinically important E. coli ST69 (n = 1), ST117 (n = 7) and ST131 (n = 1) was revealed. AmpC genes were predominantly carried by plasmids of incompatibility groups I1 (45 plasmids), A/C (10) and K (7). The plasmid IncI1/ST12 was most common and found in diverse E. coli STs in all sites. Highly diverse E. coli isolates containing AmpC and ESBL genes, including clinically important clones and emerging plasmids, are in circulation throughout Canadian wildlife.
- MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Escherichia coli klasifikace enzymologie genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- Klebsiella pneumoniae enzymologie genetika izolace a purifikace MeSH
- multilokusová sekvenční typizace MeSH
- plazmidy genetika MeSH
- vrány mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Kanada MeSH
Increasing bacterial resistance to quinolone antibiotics is apparent in both humans and animals. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. Between July 2013 and September 2014, samples were collected and analyzed in the Moravian regions of the Czech Republic to isolate the bacterium Escherichia coli. As a result, 212 E. coli isolates were obtained comprising 126 environmental isolates from poultry houses and 86 isolates from cloacal swabs from market-weight turkeys. Subsequently, the E. coli isolates were tested for susceptibility to selected antibiotics. Resistance of the poultry isolates to quinolones ranged from 53% to 73%. Additionally, the presence of plasmid-mediated resistance genes was studied. The genes were confirmed in 58% of the tested strains. The data on resistance of isolates from poultry were compared with results of resistance tests in human isolates obtained in the same regions. The high levels of resistance determined by both phenotyping and genotyping methods and reported in the present study confirm the fact that the use of fluoroquinolones in poultry should be closely monitored.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence MeSH
- chinolony farmakologie MeSH
- drůbež mikrobiologie MeSH
- Escherichia coli účinky léků izolace a purifikace MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
It is well understood that Salmonella is carried by animals and in majority of cases as asymptomatic hosts. Surveillance efforts have focused on the role of agriculture and contamination points along the food chain as the main source of human infection; however, very little attention has been paid to the contribution of wildlife in the dissemination of Salmonella and what effect anthropogenic sources have on the circulation of antibiotic resistant Salmonella serovars in wildlife species. A purposive survey was taken of large corvids roosting yearly between November and March in Europe and North America. Two thousand and seven hundred and seventy-eight corvid faecal specimens from 11 countries were submitted for Salmonella spp. culture testing. Presumptive positive isolates were further serotyped, susceptibility tested and analysed for antibiotic resistance genes. Overall, 1.40% (39/2778) (CI = 1.01, 1.90) of samples were positive for Salmonella spp. Salmonella Enteritidis was the most prevalent serovar followed by S. Infantis, S. Montevideo and S. Typhimurium. No significant difference (P > 0.05) was found in the proportion of Salmonella recovered in Europe versus North America. The most variability of serovars within a site was in Kansas, USA with five different serovars recovered. European sites were significantly more likely to yield Salmonella resistant to more than one antibiotic (OR 71.5, P < 0.001, CI = 3.77, 1358) than North American sites, where no resistance was found. Resistance to nalidixic acid, a quinolone, was recovered in nine isolates from four serovars in four different sites across Europe. Large corvids contribute to the transmission and dissemination of Salmonella and resistance genes between human and animal populations and across great distances. This information adds to the knowledge base of zoonotic pathogen prevalence and antibiotic resistance ecology in wild birds.
- MeSH
- bakteriální léková rezistence genetika MeSH
- feces mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nemoci ptáků epidemiologie mikrobiologie přenos MeSH
- prevalence MeSH
- Salmonella účinky léků genetika izolace a purifikace MeSH
- salmonelová infekce u zvířat epidemiologie mikrobiologie přenos MeSH
- salmonelóza farmakoterapie epidemiologie mikrobiologie MeSH
- vrány mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny * MeSH
- bakteriální léková rezistence genetika MeSH
- ciprofloxacin farmakologie MeSH
- Enterobacteriaceae genetika MeSH
- enterobakteriální infekce epidemiologie mikrobiologie veterinární MeSH
- frekvence genu MeSH
- molekulární sekvence - údaje MeSH
- nemoci ptáků epidemiologie mikrobiologie MeSH
- plazmidy * MeSH
- sekvence nukleotidů MeSH
- vrány mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené státy americké MeSH
Extraintestinal Escherichia coli infections are associated with extraintestinal pathogenic E. coli (ExPEC) strains. A total of 114 E. coli isolates were characterized regarding their antimicrobial resistance in a prospective study of 319 broilers from 12 slaughterhouses in the Czech Republic, a European Union member, during 2008. PCR-based assays to define ExPEC-associated traits were performed in resistant strains. Consumption of antimicrobial drugs by poultry in the Czech Republic was also analyzed. Antibiotic resistance was detected in 82% of isolates. Resistance to nalidixic acid and ciprofloxacin was predominant. Plasmid-mediated quinolone resistance genes, qnrB19 and qnrS1, were detected in 1 and 3 of 93 resistant isolates, respectively. Twenty-three percent of resistant isolates were considered as ExPEC. In total, 972 kg of flumequine, enrofloxacin, and difloxacin were used in poultry in the Czech Republic during 2008. High prevalence of broilers with ciprofloxacin-resistant E. coli isolates was linked to consumption of quinolones in poultry. Broilers may comprise an important vehicle for community-wide dissemination of fluoroquinolone-resistant E. coli and ExPEC. Withdrawal of fluoroquinolones from use in chicken production should be seriously considered in the Czech Republic and the European Union as well.
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky farmakologie MeSH
- chinolony farmakologie MeSH
- Escherichia coli účinky léků izolace a purifikace MeSH
- faktory virulence genetika MeSH
- fylogeneze MeSH
- infekce vyvolané Escherichia coli epidemiologie mikrobiologie veterinární MeSH
- kur domácí * MeSH
- maso mikrobiologie MeSH
- mnohočetná bakteriální léková rezistence MeSH
- prospektivní studie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH