KEY MESSAGE: Sequence comparison between spelt and common wheat reveals that the former has huge potential in enriching the genetic variation of the latter. Genetic variation is the foundation of crop improvement. By comparing genome sequences of a Triticum spelta accession and one of its derived hexaploid lines with the sequences of the international reference genotype Chinese Spring, we detected variants more than tenfold higher than those present among common wheat (T. aestivum L) genotypes. Furthermore, different from the typical 'V-shaped' pattern of variant distribution often observed along wheat chromosomes, the sequence variation detected in this study was more evenly distributed along the 3B chromosome. This was also the case between T. spelta and the wild emmer genome. Genetic analysis showed that T. spelta and common wheat formed discrete groups. These results showed that, although it is believed that the spelt and common wheat are evolutionarily closely related and belong to the same species, a significant sequence divergence exists between them. Thus, the values of T. spelta in enriching the genetic variation of common wheat can be huge.
Recombinant human abacavir monophosphate deaminase (hABC-MP deaminase) was compared with the recently described rat N6-methyl-AMP (meAMP) aminohydrolase. hABC-MP deaminase, a 42 kDa polypeptide, exists predominantly as a monomer under non-denaturing conditions. Similar to the rat enzyme, hABC-MP deaminase efficiently catalyzes the hydrolytic deamination of natural substrates meAMP (5), N6,N6-dimethyl-AMP (13) and medAMP (6). Acyclic nucleoside phosphonate (ANP) N6-cyclopropyl-2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (cPrPMEDAP) (1), an intermediate intracellular metabolite of antileukemic agent GS-9219, was effectively converted to the corresponding active guanine analog by hABC-MP deaminase. In addition to cPrPMEDAP (1), a number of other biologically active N6-substituted purine ANPs are alternative substrates for hABC-MP deaminase. The efficiency of their deamination depends on the character of N6-substitution in the adenine and/or 2,6-diaminopurine ring. ANPs with N6-cyclic substituents are deaminated more readily than corresponding compounds with aliphatic substituents of the same length. The deamination of ANPs is also influenced by modifications at the phosphonoalkyl side chain. Among 9-[2-(phosphonomethoxy)propyl] ANPs, (S)-enantiomers are preferred to (R)-enantiomers. Alternatively, the presence of extended 9-[2-(phosphonoethoxy)ethyl] moiety leads to a moderate increase in the reaction velocity compared to cPrPMEDAP (1). Comparison of hABC-MP deaminase and the rat meAMP aminohydrolase across a broad spectrum of N6-substituted substrates revealed a strong correlation of their substrate specificities. Similar to the rat meAMP aminohydrolase, hABC-MP deaminase was highly sensitive to deoxycoformycin monophosphate, but not to the guanine product of cPrPMEDAP (1) deamination. Together, these data demonstrate that hABC-MP deaminase is human meAMP aminohydrolase involved in the intracellular activation of biologically active N6-substituted nucleotide analogs.