Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.
- MeSH
- 3-oxo-5-alfa-steroid-4-dehydrogenasa metabolismus genetika MeSH
- dolichol * metabolismus biosyntéza MeSH
- glykosylace MeSH
- lidé MeSH
- membránové proteiny metabolismus genetika MeSH
- missense mutace MeSH
- vrozené poruchy glykosylace metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs. We find that Integrator functions are disrupted by BRAT1 deletion. In particular, defects in BRAT1 impede proper 3' end processing of UsnRNAs and snoRNAs, replication-dependent histone pre-mRNA processing, and alter the expression of protein-coding genes. Importantly, impairments in Integrator function are also evident in patient-derived cells from BRAT1 related neurological disease. Collectively, our data suggest that defects in BRAT1 interfere with proper Integrator functions, leading to incorrect expression of RNAs and proteins, resulting in neurodegeneration.
- MeSH
- fenotyp MeSH
- histony MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- mutace MeSH
- neurodegenerativní nemoci * genetika MeSH
- posttranskripční úpravy RNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.
- MeSH
- dominantní geny * MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetická variace * MeSH
- genetické asociační studie metody MeSH
- heterozygot MeSH
- lidé MeSH
- myši MeSH
- neurovývojové poruchy diagnóza genetika MeSH
- spektrin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
CONTEXT: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date. OBJECTIVE: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy. DESIGN: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015 and 2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated. SETTING: This was a multicenter retrospective study using information collected from 3 predominant centers. PATIENTS: A total of 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included. MAIN OUTCOME MEASURES: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and T4), and height and head circumference charts. RESULTS: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients. CONCLUSIONS: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically underinvestigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder.
- MeSH
- biologická variabilita populace MeSH
- dědičné demyelinizační nemoci CNS komplikace epidemiologie genetika MeSH
- dítě MeSH
- DNA řízené RNA-polymerasy genetika MeSH
- dospělí MeSH
- genetická heterogenita MeSH
- hypogonadismus epidemiologie etiologie MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé MeSH
- mitochondriální nemoci komplikace epidemiologie genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- nemoci endokrinního systému epidemiologie etiologie genetika MeSH
- novorozenec MeSH
- poruchy růstu epidemiologie etiologie genetika MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- retrospektivní studie MeSH
- RNA-polymerasa III genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
- MeSH
- adaptorový proteinový komplex 4 genetika MeSH
- corpus callosum diagnostické zobrazování MeSH
- dítě MeSH
- dospělí MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody trendy MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- registrace MeSH
- spastická paraplegie dědičná diagnostické zobrazování genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Objective: To investigate the pathogenicity of a novel homozygous BRAT1 variant in 2 siblings with nonprogressive cerebellar ataxia (NPCA) through functional studies on primary and immortalized patient cell lines. Methods: BRAT1 protein levels and ataxia-telangiectasia mutated (ATM) kinase activity in patient-derived and control cell lines were assessed by Western blotting. The impact of the novel BRAT1 variants on mitochondrial function was also assessed, by comparing patient and control cell lines for rates of oxygen consumption and for phosphorylation (S293) of the E1⍺ subunit of pyruvate dehydrogenase (PDH). Results: Two male siblings with NPCA, mild intellectual disability, and isolated cerebellar atrophy were found to be homozygous for a c.185T>A (p.Val62Glu) variant in BRAT1 by whole exome sequencing. Western blotting revealed markedly decreased BRAT1 protein levels in lymphocytes and/or fibroblast cells from both affected siblings compared to control cell lines. There were no differences between the patient and control cells in ATM kinase activation, following ionizing radiation. Mitochondrial studies were initially suggestive of a defect in regulation of PDH activity, but there was no evidence of increased phosphorylation of the E1⍺ subunit of the PDH complex. Measurement of oxygen consumption rates similarly failed to identify differences between patient and control cells. Conclusions: Biallelic pathogenic variants in BRAT1 can be associated with NPCA, a phenotype considerably milder than previously reported. Surprisingly, despite the molecular role currently proposed for BRAT1 in ATM regulation, this disorder is unlikely to result from defective ATM kinase or mitochondrial dysfunction.
- Publikační typ
- časopisecké články MeSH