Efficacies of the Ammi visnaga seeds extract and a majority of substances on larval Culex quinquefasciatus mortality in various development stages including pupae were studied. The effect of exposure time on larval mortality was also studied. The effect of sublethal concentrations or short exposure times on further larval development and subsequent fecundity in adults were studied as well. Lethal doses of the extract were estimated for the 2nd, 3rd and 4th instar of C. quinquefasciatus (LC50 for 18, 23 and 180 mg L(-1), respectively). The majority of furanochromenes, khellin and visnagin, were identified by analysing the extract. Khellin was significantly more effective compared to visnagin, whose LC50 was estimated at 8, 10 and 41 mg L(-1) for the 2nd, 3rd and 4th instar larvae. Khellin showed very fast efficacy on mortality for the 3rd instar larvae in a concentration of 100 mg L(-1). Fifty percent mortality was determined 30 min after application, a time which was considerably shorter compared to the extract (113 min) or visnagin (169 min). The effect of the application of lethal concentrations on C. quinquefasciatus larval mortality was studied. The least number of adults were hatched after application of the extract and khellin (41.8% and 37.9%, respectively), less than after visnagin application (46.7%) or in the control (94.2%). LC50 application caused lower fecundity in the hatched adults, lower hatchability of the eggs, and also very low natality, more than 77% lower for khellin compared to the control. A short exposure, corresponding to our estimated LT30, caused no significant acute toxicity in the larvae (until 24 h) for the extract or visnagin (4.3% and 11.5%, respectively); however, 18 min of action from khellin caused a 54.3% mortality rate of the larvae within 24 h.
- MeSH
- Ammi chemistry MeSH
- Time Factors MeSH
- Culex * drug effects MeSH
- Insecticides * chemistry isolation & purification pharmacology MeSH
- Khellin chemistry isolation & purification pharmacology MeSH
- Larva drug effects MeSH
- Lethal Dose 50 MeSH
- Plant Extracts * chemistry isolation & purification pharmacology MeSH
- Seeds chemistry MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones.
- MeSH
- Enzyme Activation drug effects MeSH
- Aryl Hydrocarbon Hydroxylases metabolism MeSH
- Cell Line MeSH
- Cytochrome P-450 CYP1A1 genetics metabolism MeSH
- Gene Expression MeSH
- Hepatocytes drug effects metabolism MeSH
- Khellin pharmacology MeSH
- Humans MeSH
- Receptors, Aryl Hydrocarbon metabolism MeSH
- Gene Expression Regulation drug effects MeSH
- Genes, Reporter MeSH
- Signal Transduction drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH