- MeSH
- Anthropology methods MeSH
- Genome, Human genetics MeSH
- Humans MeSH
- Neanderthals genetics MeSH
- Genetics, Population MeSH
- DNA, Ancient * analysis isolation & purification MeSH
- Gene Flow genetics MeSH
- Human Development MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
- MeSH
- Anthropology methods MeSH
- Databases, Nucleic Acid MeSH
- Genome, Human genetics MeSH
- Humans MeSH
- Metadata MeSH
- DNA, Mitochondrial analysis genetics MeSH
- DNA, Ancient * analysis isolation & purification MeSH
- Human Development MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
- MeSH
- History, Ancient MeSH
- Child MeSH
- Adult MeSH
- Genetic Variation MeSH
- Genomics MeSH
- Skeleton * anatomy & histology MeSH
- Humans MeSH
- Paleopathology MeSH
- DNA, Ancient MeSH
- Body Height * genetics MeSH
- Health * history MeSH
- Farmers * history MeSH
- Agriculture * history MeSH
- Check Tag
- History, Ancient MeSH
- Child MeSH
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Geographicals
- Europe MeSH
Working with mitochondrial DNA from highly degraded samples is challenging. We present a whole mitogenome Illumina-based sequencing method suitable for highly degraded samples. The method makes use of double-stranded library preparation with hybridization-based target enrichment. The aim of the study was to implement a new user-friendly method for analysing many ancient DNA samples at low cost. The method combines the Swift 2S™ Turbo library preparation kit and xGen® panel for mitogenome enrichment. Swift allows to use low input of aDNA and own adapters and primers, handles inhibitors well, and has only two purification steps. xGen is straightforward to use and is able to leverage already pooled libraries. Given the ancient DNA is more challenging to work with, the protocol was developed with several improvements, especially multiplying DNA input in case of low concentration DNA extractions followed by AMPure® beads size selection and real-time pre-capture PCR monitoring in order to avoid cycle-optimization step. Nine out of eleven analysed samples successfully retrieved mitogenomes. Hence, our method provides an effective analysis of whole mtDNA, and has proven to be fast, cost-effective, straightforward, with utilisation in population-wide research of burial sites.
OBJECTIVE: We aim to identify maternal genetic affinities between the Middle to Final Neolithic (3850-2300 BC) populations from present-day Poland and possible genetic influences from the Pontic steppe. MATERIALS AND METHODS: We conducted ancient DNA studies from populations associated with Złota, Globular Amphora, Funnel Beaker, and Corded Ware cultures (CWC). We sequenced genomic libraries on Illumina platform to generate 86 complete ancient mitochondrial genomes. Some of the samples were enriched for mitochondrial DNA using hybridization capture. RESULTS: The maternal genetic composition found in Złota-associated individuals resembled that found in people associated with the Globular Amphora culture which indicates that both groups likely originated from the same maternal genetic background. Further, these two groups were closely related to the Funnel Beaker culture-associated population. None of these groups shared a close affinity to CWC-associated people. Haplogroup U4 was present only in the CWC group and absent in Złota group, Globular Amphora, and Funnel Beaker cultures. DISCUSSION: The prevalence of mitochondrial haplogroups of Neolithic farmer origin identified in Early, Middle and Late Neolithic populations suggests a genetic continuity of these maternal lineages in the studied area. Although overlapping in time - and to some extent - in cultural expressions, none of the studied groups (Złota, Globular Amphora, Funnel Beaker), shared a close genetic affinity to CWC-associated people, indicating a larger extent of cultural influence from the Pontic steppe than genetic exchange. The higher frequency of haplogroup U5b found in populations associated with Funnel Beaker, Globular Amphora, and Złota cultures suggest a gradual maternal genetic influx from Mesolithic hunter-gatherers. Moreover, presence of haplogroup U4 in Corded Ware groups is most likely associated with the migrations from the Pontic steppe at the end of the Neolithic and supports the observed genetic distances.
- MeSH
- Anthropology, Physical MeSH
- White People genetics MeSH
- History, Ancient MeSH
- Haplotypes genetics MeSH
- Humans MeSH
- DNA, Mitochondrial genetics MeSH
- DNA, Ancient * MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
Research on ancient and forensic DNA is related in many ways, and the two fields must deal with similar obstacles. Therefore, communication between these two communities has the potential to improve results in both research fields. Here, we present the insights gained in the ancient DNA community with regard to analyzing DNA from aged skeletal material and the potential use of the developed protocols in forensic work. We discuss the various steps, from choosing samples for DNA extraction to deciding between classical PCR amplification and massively parallel sequencing approaches. Based on the progress made in ancient DNA analyses combined with the requirements of forensic work, we suggest that there is substantial potential for incorporating ancient DNA approaches into forensic protocols, a process that has already begun to a considerable extent. However, taking full advantage of the experiences gained from ancient DNA work will require comparative studies by the forensic DNA community to tailor the methods developed for ancient samples to the specific needs of forensic studies and case work. If successful, in our view, the benefits for both communities would be considerable.
- MeSH
- DNA Fingerprinting MeSH
- DNA * genetics MeSH
- Humans MeSH
- DNA Degradation, Necrotic MeSH
- Aged MeSH
- Forensic Genetics MeSH
- DNA, Ancient * MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The Asiatic wild dog (Cuon alpinus), restricted today largely to South and Southeast Asia, was widespread throughout Eurasia and even reached North America during the Pleistocene. Like many other species, it suffered from a huge range loss towards the end of the Pleistocene and went extinct in most of its former distribution. The fossil record of the dhole is scattered and the identification of fossils can be complicated by an overlap in size and a high morphological similarity between dholes and other canid species. We generated almost complete mitochondrial genomes for six putative dhole fossils from Europe. By using three lines of evidence, i.e., the number of reads mapping to various canid mitochondrial genomes, the evaluation and quantification of the mapping evenness along the reference genomes and phylogenetic analysis, we were able to identify two out of six samples as dhole, whereas four samples represent wolf fossils. This highlights the contribution genetic data can make when trying to identify the species affiliation of fossil specimens. The ancient dhole sequences are highly divergent when compared to modern dhole sequences, but the scarcity of dhole data for comparison impedes a more extensive analysis.
- MeSH
- Canidae anatomy & histology classification genetics MeSH
- Phylogeny * MeSH
- Genome, Mitochondrial MeSH
- Hybridization, Genetic MeSH
- Animal Migration MeSH
- DNA, Mitochondrial MeSH
- DNA, Ancient * MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
OBJECTIVE: In this work we aim to investigate the origins and genetic affinities of Bronze Age populations (2,400-1,100 BC) from the region of southern Poland and to trace maternal kinship patterns present in the burials of those populations by the use of complete mitochondrial genomes. MATERIALS AND METHODS: We performed ancient DNA analyses for Bronze Age individuals from present-day Poland associated with the Strzyżow culture, the Mierzanowice culture, and the Trzciniec Cultural circle. To obtain complete mitochondrial genomes, we sequenced genomic libraries using Illumina platform. Additionally, hybridization capture was used to enrich some of the samples for mitochondrial DNA. AMS 14 C-dating was conducted for 51 individuals to verify chronological and cultural attribution of the analyzed samples. RESULTS: Complete ancient mitochondrial genomes were generated for 80 of the Bronze Age individuals from present-day Poland. The results of the population genetic analyses indicate close maternal genetic affinity between Mierzanowice, Trzciniec, and Corded Ware culture-associated populations. This is in contrast to the genetically more distant Strzyżów people that displayed closer maternal genetic relation to steppe populations associated with the preceding Yamnaya culture and Catacomb culture, and with later Scythians. Potential maternal kinship relations were identified in burials of Mierzanowice and Trzciniec populations analyzed in this study. DISCUSSION: Results revealed genetic continuity from the Late Neolithic Corded Ware groups to Bronze Age Mierzanowice and Trzciniec-associated populations, and possible additional genetic contribution from the steppe to the formation of the Strzyżów-associated group at the end of 3rd millennium BC. Mitochondrial patterns indicated several pairs of potentially maternally related individuals mostly in Trzciniec-associated group.
- MeSH
- Anthropology, Physical MeSH
- White People genetics MeSH
- History, Ancient MeSH
- Child MeSH
- Adult MeSH
- Genome, Mitochondrial genetics MeSH
- Haplotypes genetics MeSH
- Cemeteries MeSH
- Humans MeSH
- Human Migration MeSH
- Genetics, Population * MeSH
- DNA, Ancient analysis MeSH
- Check Tag
- History, Ancient MeSH
- Child MeSH
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
From the first century AD, Europe has been interested by population movements, commonly known as Barbarian migrations. Among these processes, the one involving the Longobard culture interested a vast region, but its dynamics and demographic impact remains largely unknown. Here we report 87 new complete mitochondrial sequences coming from nine early-medieval cemeteries located along the area interested by the Longobard migration (Czech Republic, Hungary and Italy). From the same areas, we sampled necropoleis characterized by cultural markers associated with the Longobard culture (LC) and coeval burials where no such markers were found, or with a chronology slightly preceding the presumed arrival of the Longobards in that region (NLC). Population genetics analysis and demographic modeling highlighted a similarity between LC individuals, as reflected by the sharing of quite rare haplogroups and by the degree of genetic resemblance between Hungarian and Italian LC necropoleis estimated via a Bayesian approach, ABC. The demographic model receiving the strongest statistical support also postulates a contact between LC and NLC communities, thus indicating a complex dynamics of admixture in medieval Europe.
- MeSH
- Bayes Theorem MeSH
- History, Medieval MeSH
- Genome, Mitochondrial genetics MeSH
- Haplotypes genetics MeSH
- Cemeteries MeSH
- Humans MeSH
- Human Migration history MeSH
- DNA, Mitochondrial genetics MeSH
- DNA, Ancient analysis MeSH
- Check Tag
- History, Medieval MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Czech Republic MeSH
- Italy MeSH
- Hungary MeSH