High-grain feeding used in the animal production is known to affect the host rumen bacterial community, but our understanding of consequent changes in goats is limited. This study was therefore aimed to evaluate bacterial population dynamics during 20 days adaptation of 4 ruminally cannulated goats to the high-grain diet (grain: hay - ratio of 40:60). The dietary transition of goats from the forage to the high-grain-diet resulted in the significant decrease of rumen fluid pH, which was however still higher than value established for acute or subacute ruminal acidosis was not diagnosed in studied animals. DGGE analysis demonstrated distinct ruminal microbial populations in hay-fed and grain-fed animals, but the substantial animal-to-animal variation were detected. Quantitative PCR showed for grain-fed animals significantly higher number of bacteria belonging to Clostridium leptum group at 10 days after the incorporation of corn into the diet and significantly lower concentration of bacteria belonging to Actinobacteria phylum at the day 20 after dietary change. Taxonomic distribution analysed by NGS at day 20 revealed the similar prevalence of the phyla Firmicutes and Bacteroidetes in all goats, significantly higher presence of the unclassified genus of groups of Bacteroidales and Ruminococcaceae in grain-fed animals and significantly higher presence the genus Prevotella and Butyrivibrio in the forage-fed animals. The three different culture-independent methods used in this study show that high proportion of concentrate in goat diet does not induce any serious disturbance of their rumen ecosystem and indicate the good adaptive response of caprine ruminal bacteria to incorporation of corn into the diet.
- MeSH
- Actinobacteria klasifikace genetika metabolismus MeSH
- bachor mikrobiologie MeSH
- Bacteroidetes klasifikace genetika metabolismus MeSH
- Butyrivibrio klasifikace genetika metabolismus MeSH
- Clostridium klasifikace genetika metabolismus MeSH
- fermentace MeSH
- Firmicutes klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- fyziologie výživy zvířat * MeSH
- koncentrace vodíkových iontů MeSH
- kozy MeSH
- krmivo pro zvířata analýza MeSH
- kukuřice setá chemie metabolismus MeSH
- lipnicovité chemie metabolismus MeSH
- píštěl žaludku MeSH
- Prevotella klasifikace genetika metabolismus MeSH
- Ruminococcus klasifikace genetika metabolismus MeSH
- sekvenční analýza DNA MeSH
- střevní mikroflóra fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bioinformatic evidence of the presence of a large conjugative transposon in ruminal bacterium Prevotella bryantii B(1)4(T) is presented. The described transposon appears to be related to another large conjugative transposon CTnBST, described in Bacteroides uniformis WH207 and to the conjugative transposon CTn3-Bf, which was observed in the genome of Bacteroides fragilis strain YCH46. All three transposons share tra gene regions with high amino acid identity and clearly conserved gene order. Additionally, a second conserved region consisting of hypothetical genes was discovered in all three transposons and named the GG region. This region served as a specific sequence signature and made possible the discovery of several other apparently related hypothetical conjugative transposons in bacteria from the genus Bacteroides. A cluster of genes involved in sugar utilization and metabolism was discovered within the hypothetical CTnB(1)4, to a certain extent resembling the polysaccharide utilization loci which were described recently in some Bacteroides strains. This is the first firm report on the presence of a large mobile genetic element in any strain from the genus Prevotella.
- MeSH
- Bacteroides klasifikace genetika MeSH
- bakteriální proteiny genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- konjugace genetická MeSH
- molekulární sekvence - údaje MeSH
- Prevotella klasifikace genetika MeSH
- sekvence nukleotidů MeSH
- transpozibilní elementy DNA MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH