The CD94 receptor, expressed on natural killer (NK) and CD8+ T cells, is known as a relatively non-polymorphic receptor with orthologues in humans, other primates, cattle, and rodents. In the house mouse (Mus musculus), a single allele is highly conserved among laboratory strains, and reports of allelic variation in lab- or wild-living mice are lacking, except for deficiency in one lab strain (DBA/2J). The non-classical MHC-I molecule Qa-1b is the ligand for mouse CD94/NKG2A, presenting alternative non-americ fragment of leader peptides (Qa-1 determinant modifier (Qdm)) from classical MHC-I molecules. Here, we report a novel allele identified in free-living house mice captured in Norway, living among individuals carrying the canonical Cd94 allele. The novel Cd94LocA allele encodes 12 amino acid substitutions in the extracellular lectin-like domain. Flow cytometric analysis of primary NK cells and transfected cells indicates that the substitutions prevent binding of CD94 mAb and Qa-1b/Qdm tetramers. Our data further indicate correlation of Cd94 polymorphism with the two major subspecies of house mice in Europe. Together, these findings suggest that the Cd94LocA/NKG2A heterodimeric receptor is widely expressed among M. musculus subspecies musculus, with ligand-binding properties different from mice of subspecies domesticus, such as the C57BL/6 strain.
- MeSH
- alely MeSH
- buňky NK metabolismus MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- druhová specificita MeSH
- HEK293 buňky MeSH
- histokompatibilita - antigeny třídy I chemie genetika metabolismus MeSH
- křečci praví MeSH
- lektinové receptory NK-buněk - podrodina C chemie genetika metabolismus MeSH
- lektinové receptory NK-buněk - podrodina D chemie genetika metabolismus MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- myši inbrední C57BL MeSH
- myši inbrední DBA MeSH
- peptidy chemie genetika metabolismus MeSH
- polymorfismus genetický * MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Norsko MeSH
Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.
- MeSH
- Equidae genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kodon genetika MeSH
- molekulární evoluce * MeSH
- proteiny přenášející kationty genetika MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nuext generation sequencing studies in Homo sapiens have identified novel immunoglobulin heavy variable (IGHV) genes and alleles necessitating changes in the international ImMunoGeneTics information system (IMGT) GENE-DB and reference directories of IMGT/V-QUEST. In chronic lymphocytic leukaemia (CLL), the somatic hypermutation (SHM) status of the clonotypic rearranged IGHV gene is strongly associated with patient outcome. Correct determination of this parameter strictly depends on the comparison of the nucleotide sequence of the clonotypic rearranged IGHV gene with that of the closest germline counterpart. Consequently, changes in the reference directories could, in principle, affect the correct interpretation of the IGHV mutational status in CLL. To this end, we analyzed 8066 productive IG heavy chain (IGH) rearrangement sequences from our consortium both before and after the latest update of the IMGT/V-QUEST reference directory. Differences were identified in 405 cases (5 % of the cohort). In 291/405 sequences (71.9 %), changes concerned only the IGHV gene or allele name, whereas a change in the percent germline identity (%GI) was noted in 114/405 (28.1 %) sequences; in 50/114 (43.8 %) sequences, changes in the %GI led to a change in the mutational set. In conclusion, recent changes in the IMGT reference directories affected the interpretation of SHM in a sizeable number of IGH rearrangement sequences from CLL patients. This indicates that both physicians and researchers should consider a re-evaluation of IG sequence data, especially for those IGH rearrangement sequences that, up to date, have a GI close to 98 %, where caution is warranted.
The polymorphism of exon 2 of the DAB genes (major histocompatibility complex [MHC] class IIB) was investigated for the first time in the freshwater cyprinid fish species, Squalius cephalus, in the wide range of its distribution in Europe. We identified 111 different MHC class IIB variants in 15 chub populations distributed from Finland to Spain. The sequence analysis showed that many structurally important amino acid sites that were conserved among tetrapods were also conserved in chub. The analysis of recombination indicated that it does not play an important role in producing and maintaining the variation of DAB genes analyzed in the present study. The exon 2 was shown to be subjected to intense positive selection. Phylogenetic analysis and sequence identities suggest the presence of two class IIB loci (DAB1-like and DAB3-like) in chub. Nevertheless, the presence of three DAB3-like sequence variants in several individuals indicates the duplication of the DAB3 gene. A contrasting selection pattern was found in DAB1-like and DAB3-like genes, which suggests the potential functional differences between these genes. Some DAB sequence variants were shared among the populations of different mtDNA lineages. The phylogenetic analyses did not confirm any biogeographical pattern of the genetic structure of MHC IIB in chub, which is in line with balancing selection and trans-species polymorphism in MHC genes. Nevertheless, cluster analysis based on the presence/absence of DAB sequence variants in the populations showed the phylogeophraphical pattern corresponding to the mtDNA lineages, which indicates that neutral selection can partially explain the MHC IIB evolution in chub.
- MeSH
- Cyprinidae genetika imunologie MeSH
- exony MeSH
- geny MHC třídy II MeSH
- molekulární evoluce MeSH
- polymorfismus genetický MeSH
- selekce (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host-pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites' elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c x CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNgamma levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNgamma), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype-Lmr21: skin lesions and IFNgamma levels, Lmr22: IL-4 levels, Lmr23: IFNgamma levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread.
- MeSH
- financování organizované MeSH
- interferon gama krev MeSH
- kůže patologie MeSH
- Leishmania imunologie MeSH
- leishmanióza kožní genetika imunologie parazitologie patologie MeSH
- lymfatické uzliny parazitologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pohlavní dimorfismus MeSH
- slezina parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
Atopy is a predisposition to hyperproduction of immunoglobulin E (IgE) against common environmental allergens. It is often associated with development of allergic diseases such as asthma, rhinitis, and dermatitis. Production of IgE is influenced by genetic and environmental factors. In spite of progress in the study of heredity of atopy, the genetic mechanisms of IgE regulation have not yet been completely elucidated. The analysis of complex traits can benefit considerably from integration of human and mouse genetics. Previously, we mapped a mouse IgE-controlling locus Lmr9 on chromosome 4 to a segment of <9 Mb. In this study, we tested levels of total IgE and 25 specific IgEs against inhalant and food allergens in 67 Czech atopic families. In the position homologous to Lmr9 on chromosome 8q12 marked by D8S285, we demonstrated a novel human IgE-controlling locus exhibiting suggestive linkage to composite inhalant allergic sensitization (limit of detection, LOD = 2.11, P = 0.0009) and to nine specific IgEs, with maximum LOD (LOD = 2.42, P = 0.0004) to plantain. We also tested 16 markers at previously reported chromosomal regions of atopy. Linkage to plant allergens exceeding the LOD > 2.0 was detected at 5q33 (D5S1507, LOD = 2.11, P = 0.0009) and 13q14 (D13S165, LOD = 2.74, P = 0.0002). The significant association with plant allergens (quantitative and discrete traits) was found at 7p14 (D7S2250, corrected P = 0.026) and 12q13 (D12S1298, corrected P = 0.043). Thus, the finding of linkage on chromosome 8q12 shows precision and predictive power of mouse models in the investigation of complex traits in humans. Our results also confirm the role of loci at 5q33, 7p14, 12q14, and 13q13 in control of IgE.
- MeSH
- alergeny imunologie škodlivé účinky MeSH
- atopická dermatitida etnologie genetika imunologie MeSH
- časná přecitlivělost etnologie genetika MeSH
- dítě MeSH
- dospělí MeSH
- druhová specificita MeSH
- epigeneze genetická genetika MeSH
- etnicita genetika MeSH
- financování organizované MeSH
- genetická predispozice k nemoci MeSH
- imunoglobulin E biosyntéza imunologie krev MeSH
- kvantitativní znak dědičný MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 8 genetika MeSH
- lod skóre MeSH
- mapování chromozomů MeSH
- mladiství MeSH
- myši genetika imunologie MeSH
- potravinová alergie etnologie genetika imunologie MeSH
- respirační alergie etnologie genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- myši genetika imunologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
- MeSH
- isoantigeny analýza MeSH
- mapování chromozomů MeSH
- mikrosatelitní repetice MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- MeSH
- myši MeSH
- regulace genové exprese účinky léků MeSH
- Th2 buňky genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH