"U01 MH108148"
Dotaz
Zobrazit nápovědu
Although specific risk factors for brain alterations in bipolar disorders (BD) are currently unknown, obesity impacts the brain and is highly prevalent in BD. Gray matter correlates of obesity in BD have been well documented, but we know much less about brain white matter abnormalities in people who have both obesity and BD. We obtained body mass index (BMI) and diffusion tensor imaging derived fractional anisotropy (FA) from 22 white matter tracts in 899 individuals with BD, and 1287 control individuals from 20 cohorts in the ENIGMA-BD working group. In a mega-analysis, we investigated the associations between BMI, diagnosis or medication and FA. Lower FA was associated with both BD and BMI in six white matter tracts, including the corpus callosum and thalamic radiation. Higher BMI or BD were uniquely associated with lower FA in three and six white matter tracts, respectively. People not receiving lithium treatment had a greater negative association between FA and BMI than people treated with lithium in the posterior thalamic radiation and sagittal stratum. In three tracts BMI accounted for 10.5 to 17% of the negative association between the number of medication classes other than lithium and FA. Both overweight/obesity and BD demonstrated lower FA in some of the same regions. People prescribed lithium had a weaker association between BMI and FA than people not on lithium. In contrast, greater weight contributed to the negative associations between medications and FA. Obesity may add to brain alterations in BD and may play a role in effects of medications on the brain.
- MeSH
- anizotropie MeSH
- bílá hmota * patologie diagnostické zobrazování metabolismus MeSH
- bipolární porucha * patologie metabolismus MeSH
- dospělí MeSH
- index tělesné hmotnosti MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek patologie MeSH
- obezita * patologie metabolismus komplikace MeSH
- šedá hmota MeSH
- zobrazování difuzních tenzorů metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- MeSH
- anizotropie MeSH
- bílá hmota patologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek * patologie diagnostické zobrazování MeSH
- schizofrenie * patologie diagnostické zobrazování MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning).
- MeSH
- algoritmy MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- metaanalýza jako téma MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování MeSH
- neurozobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- schizofrenie diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
- MeSH
- depresivní porucha unipolární * genetika MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování MeSH
- neurozobrazování MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia.
- MeSH
- čelní lalok diagnostické zobrazování patologie MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- magnetická rezonanční tomografie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování patologie MeSH
- neurozobrazování MeSH
- prefrontální mozková kůra diagnostické zobrazování patologie MeSH
- schizofrenie diagnostické zobrazování patologie MeSH
- senioři MeSH
- spánkový lalok diagnostické zobrazování patologie MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- věk při počátku nemoci MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Research Support, N.I.H., Extramural MeSH