Annotation of ECG record
Dotaz
Zobrazit nápovědu
Objective.The aim of this study is to create a database for the development, evaluation and objective comparison of algorithms for P wave detection in ECG signals.BrnoUniversity ofTechnology ECG SignalDatabase with Annotations ofP-Wave (BUT PDB) is an ECG signal database with marked peaks of P waves annotated by ECG experts. Currently, there are only a few databases of pathological ECG signals with P-wave annotations, and some are incorrect.Approach.The pathological ECG signals used in this work were selected from three existing databases of ECG signals: MIT-BIH Arrhythmia Database, MIT-BIH Supraventricular Arrhythmia Database and Long Term AF Database. The P-wave positions were manually annotated by two ECG experts in all selected signals.Main results.The final BUT PDB composed of selected signals consists of 50 two-minute, two-lead pathological ECG signal records with annotated P waves. Each record also contains a description of the diagnosis (pathology) present in the selected part of the record and information about positions and types of QRS complexes.Significance.The BUT PDB is created for developing new, more accurate and robust methods for P wave detection. These algorithms will be used in medical practice and will help cardiologists to evaluate ECG records, establish diagnoses and save time.
While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- elektrokardiografie ambulantní metody MeSH
- elektrokardiografie metody MeSH
- komorové extrasystoly * MeSH
- lidé MeSH
- nositelná elektronika * MeSH
- počítačové zpracování signálu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Accurate automated detection of P waves in ECG allows to provide fast correct diagnosis of various cardiac arrhythmias and select suitable strategy for patients' treatment. However, P waves detection is a still challenging task, especially in long-term ECGs with manifested cardiac pathologies. Software tools used in medical practice usually fail to detect P waves under pathological conditions. Most of recently published approaches have not been tested on such the signals at all. Here we introduce a novel method for accurate and reliable P wave detection, which is success in both normal and pathological cases. Our method uses phasor transform of ECG and innovative decision rules in order to improve P waves detection in pathological signals. The rules are based on a deep knowledge of heart manifestation during various arrhythmias, such as atrial fibrillation, premature ventricular contraction, etc. By involving the rules into the decision process, we are able to find the P wave in the correct location or, alternatively, not to search for it at all. In contrast to another studies, we use three, highly variable annotated ECG databases, which contain both normal and pathological records, to objectively validate our algorithm. The results for physiological records are Se = 98.56% and PP = 99.82% for MIT-BIH Arrhythmia Database (MITDP, with MITDB P-Wave Annotations) and Se = 99.23% and PP = 99.12% for QT database. These results are comparable with other published methods. For pathological signals, the proposed method reaches Se = 96.40% and PP = 91.56% for MITDB and Se = 93.07% and PP = 88.60% for Brno University of Technology ECG Signal Database with Annotations of P wave (BUT PDB). In these signals, the proposed detector greatly outperforms other methods and, thus, represents a huge step towards effective use of fully automated ECG analysis in a real medical practice.
To the best of our knowledge, there is no annotated database of PPG signals recorded by smartphone publicly available. This article introduces Brno University of Technology Smartphone PPG Database (BUT PPG) which is an original database created by the cardiology team at the Department of Biomedical Engineering, Brno University of Technology, for the purpose of evaluating photoplethysmographic (PPG) signal quality and estimation of heart rate (HR). The data comprises 48 10-second recordings of PPGs and associated electrocardiographic (ECG) signals used for determination of reference HR. The data were collected from 12 subjects (6 female, 6 male) aged between 21 and 61. PPG data were collected by smartphone Xiaomi Mi9 with sampling frequency of 30 Hz. Reference ECG signals were recorded using a mobile ECG recorder (Bittium Faros 360) with a sampling frequency of 1,000 Hz. Each PPG signal includes annotation of quality created manually by biomedical experts and reference HR. PPG signal quality is indicated binary: 1 indicates good quality for HR estimation, 0 indicates signals where HR cannot be detected reliably, and thus, these signals are unsuitable for further analysis. As the only available database containing PPG signals recorded by smartphone, BUT PPG is a unique tool for the development of smart, user-friendly, cheap, on-the-spot, self-home-monitoring of heart rate with the potential of widespread using.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- chytrý telefon MeSH
- databáze faktografické * MeSH
- dospělí MeSH
- elektrokardiografie MeSH
- fotopletysmografie statistika a číselné údaje MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- referenční hodnoty MeSH
- referenční standardy MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Česká republika MeSH
Non-invasive fetal electrocardiography appears to be one of the most promising fetal monitoring techniques during pregnancy and delivery nowadays. This method is based on recording electrical potentials produced by the fetal heart from the surface of the maternal abdomen. Unfortunately, in addition to the useful fetal electrocardiographic signal, there are other interference signals in the abdominal recording that need to be filtered. The biggest challenge in designing filtration methods is the suppression of the maternal electrocardiographic signal. This study focuses on the extraction of fetal electrocardiographic signal from abdominal recordings using a combination of independent component analysis, recursive least squares, and ensemble empirical mode decomposition. The method was tested on two databases, the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations and the PhysioNet Challenge 2013 database. The evaluation was performed by the assessment of the accuracy of fetal QRS complexes detection and the quality of fetal heart rate determination. The effectiveness of the method was measured by means of the statistical parameters as accuracy, sensitivity, positive predictive value, and F1-score. Using the proposed method, when testing on the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database, accuracy higher than 80% was achieved for 11 out of 12 recordings with an average value of accuracy 92.75% [95% confidence interval: 91.19-93.88%], sensitivity 95.09% [95% confidence interval: 93.68-96.03%], positive predictive value 96.36% [95% confidence interval: 95.05-97.17%] and F1-score 95.69% [95% confidence interval: 94.83-96.35%]. When testing on the Physionet Challenge 2013 database, accuracy higher than 80% was achieved for 17 out of 25 recordings with an average value of accuracy 78.24% [95% confidence interval: 73.44-81.85%], sensitivity 81.79% [95% confidence interval: 76.59-85.43%], positive predictive value 87.16% [95% confidence interval: 81.95-90.35%] and F1-score 84.08% [95% confidence interval: 80.75-86.64%]. Moreover, the non-invasive ST segment analysis was carried out on the records from the Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations database and achieved high accuracy in 7 from in total of 12 records (mean values μ < 0.1 and values of ±1.96σ < 0.1).
- MeSH
- algoritmy * MeSH
- břicho fyziologie MeSH
- databáze faktografické MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- matky statistika a číselné údaje MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- srdeční frekvence plodu fyziologie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reliable P wave detection is necessary for accurate and automatic electrocardiogram (ECG) analysis. Currently, methods for P wave detection in physiological conditions are well-described and efficient. However, methods for P wave detection during pathology are not generally found in the literature, or their performance is insufficient. This work introduces a novel method, based on a phasor transform, as well as innovative rules that improve P wave detection during pathology. These rules are based on the extraction of a heartbeats' morphological features and knowledge of heart manifestation during both physiological and pathological conditions. To properly evaluate the performance of the proposed algorithm in pathological conditions, a standard database with a sufficient number of reference P wave positions is needed. However, such a database did not exist. Thus, ECG experts annotated 12 chosen pathological records from the MIT-BIH Arrhythmia Database. These annotations are publicly available via Physionet. The algorithm performance was also validated using physiological records from the MIT-BIH Arrhythmia and QT databases. The results for physiological signals were Se = 98.42% and PP = 99.98%, which is comparable to other methods. For pathological signals, the proposed method reached Se = 96.40% and PP = 85.84%, which greatly outperforms other methods. This improvement represents a huge step towards fully automated analysis systems being respected by ECG experts. These systems are necessary, particularly in the area of long-term monitoring.
Nowadays, cardiovascular diseases represent the most common cause of death in western countries. Among various examination techniques, electrocardiography (ECG) is still a highly valuable tool used for the diagnosis of many cardiovascular disorders. In order to diagnose a person based on ECG, cardiologists can use automatic diagnostic algorithms. Research in this area is still necessary. In order to compare various algorithms correctly, it is necessary to test them on standard annotated databases, such as the Common Standards for Quantitative Electrocardiography (CSE) database. According to Scopus, the CSE database is the second most cited standard database. There were two main objectives in this work. First, new diagnoses were added to the CSE database, which extended its original annotations. Second, new recommendations for diagnostic software quality estimation were established. The ECG recordings were diagnosed by five new cardiologists independently, and in total, 59 different diagnoses were found. Such a large number of diagnoses is unique, even in terms of standard databases. Based on the cardiologists' diagnoses, a four-round consensus (4R consensus) was established. Such a 4R consensus means a correct final diagnosis, which should ideally be the output of any tested classification software. The accuracy of the cardiologists' diagnoses compared with the 4R consensus was the basis for the establishment of accuracy recommendations. The accuracy was determined in terms of sensitivity = 79.20-86.81%, positive predictive value = 79.10-87.11%, and the Jaccard coefficient = 72.21-81.14%, respectively. Within these ranges, the accuracy of the software is comparable with the accuracy of cardiologists. The accuracy quantification of the correct classification is unique. Diagnostic software developers can objectively evaluate the success of their algorithm and promote its further development. The annotations and recommendations proposed in this work will allow for faster development and testing of classification software. As a result, this might facilitate cardiologists' work and lead to faster diagnoses and earlier treatment.
- MeSH
- databáze faktografické normy MeSH
- diagnóza počítačová normy MeSH
- elektrokardiografie normy MeSH
- kardiovaskulární nemoci diagnóza MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- směrnice pro lékařskou praxi jako téma * MeSH
- validace softwaru * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
2nd edition 148 stran : ilustrace
- MeSH
- kardiovaskulární systém MeSH
- srdeční arytmie MeSH
- Publikační typ
- příručky MeSH
- NLK Obory
- kardiologie