Autoaggregation
Dotaz
Zobrazit nápovědu
Fructobacillus, a Gram-positive, non-spore-forming, facultative anaerobic bacterium, belongs to the fructophilic lactic acid bacteria (FLAB) group. The group's name originates from fructose, the favored carbon source for its members. Fructobacillus spp. are noteworthy for their distinctive traits, captivating the interest of scientists. However, there have been relatively few publications regarding the isolation and potential utilization of these microorganisms in the industry. In recent years, F. tropaeoli has garnered interest for its promising role in the food and pharmaceutical sectors, although the availability of isolates is rather limited. A more comprehensive understanding of Fructobacillus is imperative to evaluate their functionality in the industry, given their unique and exceptional properties. Our in vitro study on Fructobacillus tropaeoli KKP 3032 confirmed its fructophilic nature and high osmotolerance. This strain thrives in a 30% sugar concentration, shows resistance to low pH and bile salts, and exhibits robust autoaggregation. Additionally, it displays significant antimicrobial activity against foodborne pathogens. Evaluating its probiotic potential, it aligns with EFSA recommendations in antibiotic resistance, except for kanamycin, to which it is resistant. Further research is necessary, but preliminary analyses confirm the high probiotic potential of F. tropaeoli KKP 3032 and its ability to thrive in the presence of high concentrations of fructose. The results indicate that the isolate F. tropaeoli KKP 3032 could potentially be used in the future as a fructophilic probiotic, protective culture, and/or active ingredient in fructose-rich food.
- MeSH
- antibakteriální látky farmakologie MeSH
- fruktosa metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- ovocné a zeleninové šťávy * mikrobiologie MeSH
- pomerančovník čínský mikrobiologie chemie MeSH
- potravinářská mikrobiologie MeSH
- probiotika * izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- žlučové kyseliny a soli metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Adhesion of gut bacteria to the intestinal epithelium is the first step in their colonization of the neonatal immature gut. Bacterial colonization of the infant gut is influenced by several factors, of which the most important are the mode of delivery and breast-feeding. Breast-fed infants ingest several grams of human milk oligosaccharides (HMOs) per day, which can become receptor decoys for intestinal bacteria. The most abundant intestinal bacteria in vaginally delivered infants are bifidobacteria, whereas infants born by cesarean section are colonized by clostridia. The influence of HMOs on the adhesion of five strains of intestinal bacteria (three bifidobacterial strains and two clostridial strains) to mucus-secreting and non-mucus-secreting human epithelial cells was investigated. Bifidobacterium bifidum 1 and Bifidobacterium longum displayed almost the same level of adhesion in the presence and absence of HMOs. By contrast, adhesion of Clostridium butyricum 1 and 2 decreased from 14.41% to 6.72% and from 41.54% to 30.91%, respectively, in the presence of HMOs. The results of this study indicate that HMOs affect bacterial adhesion and are an important factor influencing bacterial colonization of the gut. Adhesion of the tested bacteria correlates with their ability to autoaggregate.
- MeSH
- bakteriální adheze * MeSH
- Bifidobacterium genetika izolace a purifikace fyziologie MeSH
- buněčné linie MeSH
- Clostridium genetika izolace a purifikace fyziologie MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- kojenec MeSH
- lidé MeSH
- mateřské mléko chemie MeSH
- oligosacharidy metabolismus MeSH
- střeva metabolismus mikrobiologie MeSH
- střevní mikroflóra MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH