Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time.
- Publication type
- Journal Article MeSH
Acta paediatrica. 416, ISSN 0803-5326 Supplement Vol. 85
68 s. : il. ; 30 cm
Neurotransmitter substrate of spatial cognition belongs to current topics in behavioral neuroscience. The present study examined the effects of serotonin depletion with p-chlorophenylalanine on learning of rats in active place avoidance, a spatial task requiring allothetic mapping and cognitive coordination and highly dependent upon hippocampus. Serotonin depletion transiently increased locomotor activity in response to footshocks, but it did not change the avoidance efficiency measured by three spatial parameters. These results suggest that serotonin neurotransmission is not crucial for cognitive coordination and allothetic learning, i.e. the processes, which are crucial for active place avoidance performance.
- MeSH
- Serotonin Antagonists pharmacology MeSH
- Fenclonine MeSH
- Financing, Organized MeSH
- Cognition physiology drug effects MeSH
- Rats MeSH
- Motor Activity physiology drug effects MeSH
- Rats, Long-Evans MeSH
- Serotonin metabolism MeSH
- Avoidance Learning physiology drug effects MeSH
- Space Perception physiology drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
The choroid plexus (CP) of brain ventricles forms the blood-cerebrospinal fluid (blood-CSF) barrier that is involved in many diseases affecting the central nervous system (CNS). We used ED1 and ED2 immunostaining to investigate epiplexus cell changes in rat CP after chronic constriction injury (CCI). In contrast to naïve CP, the CP of sham-operated rats showed an increase in the number of ED1+ cells of a similar magnitude during all periods of survival up to 3 weeks, while the number of ED2+ increased only at 3 days from operation. In comparison to naïve and sham-operated animals, the number of ED1+ and ED2+ cells in the epiplexus position increased with the duration of nerve compression. We detected no or negligible cell proliferation in the CP after sham- or CCI-operation. This suggests that increased number of ED1+ and ED2+ cells in the epiplexus position of the CP is derived from peripheral monocytes passing through altered blood-CSF barrier. The changes in epiplexus cells indicate that the CP reacts to tissue injury after the surgical approach itself and that the response to peripheral nerve lesion is greater. This suggests a role for an altered blood-CSF barrier allowing for propagation of signal molecules from damaged tissue and nerve to the CNS.
- MeSH
- Rats MeSH
- Macrophages metabolism pathology MeSH
- Choroid Plexus metabolism pathology MeSH
- Peripheral Nerve Injuries metabolism pathology MeSH
- Rats, Wistar MeSH
- Constriction, Pathologic MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Subarachnoid hemorrhage (SAH) is a specific form of hemorrhagic stroke that frequently causes intracranial hypertension. The choroid plexus (CP) of the brain ventricles is responsible for producing cerebrospinal fluid and forms the blood - cerebrospinal fluid barrier. The aim of the current study was to determine whether SAH induces an immune cell reaction in the CP and whether the resulting increase in intracranial pressure (ICP) itself can lead to cellular changes in the CP. SAH was induced by injecting non-heparinized autologous blood to the cisterna magna. Artificial cerebrospinal fluid (ACSF) instead of blood was used to assess influence of increased ICP alone. SAH and ACSF animals were left to survive for 1, 3, and 7 days. SAH induced significantly increased numbers of M1 (ED1+, CCR7+) and M2 (ED2+, CD206+) macrophages as well as MHC-II+ antigen presenting cells (APC) compared to naïve and ACSF animals. Increased numbers of ED1+ macrophages and APC were found in the CP only 3 and 7 days after ACSF injection, while ED2+ macrophage number did not increase. CD3+ T cells were not found in any of the animals. Following SAH, proliferation activity in the CP gradually increased over time while ACSF application induced higher cellular proliferation only 1 and 3 days after injection. Our results show that SAH induces an immune reaction in the CP resulting in an increase in the number of several macrophage types in the epiplexus position. Moreover, we also found that increased ICP due to ACSF application induced both an immune reaction and increased proliferation of epiplexus cells in the CP. These findings indicate that increased ICP, and not just blood, contributes to cellular changes in the CP following SAH.
- Publication type
- Journal Article MeSH