Common garden experiment
Dotaz
Zobrazit nápovědu
Vicia cracca diploids and autotetraploids are highly parapatric in Europe; tetraploids reside in western and northern part, whereas diploids occupy much drier south-eastern part. They meet together in a Central European contact zone. This distribution pattern raised questions about a transformative effect of polyploidization on plant performance and environmental tolerances. We investigated plant survival, growth, and seed production in two water regimes in a common garden experiment using seeds collected from five localities in the Central European contact zone where diploids and tetraploids occur in sympatry. Obtained data imply that tetraploids of V. cracca are not generally superior in performance to diploids. Significantly larger seeds from tetraploid mother plants collected in the field were not correlated with greater stature of the seedlings. Nonetheless, tetraploids might have a potential to out-compete diploids in the long run due to the tetraploids' ability of greater growth which manifested in the second year of cultivation. Considering the response of diploids and tetraploids to water supply, drought stressed tetraploids but not diploids produced a higher proportion of aborted seeds than watered ones, which implies that tetraploids are more drought susceptible than diploids. On the other hand, decreased plant height in drought stresses tetraploids, which simultaneously increased total seed production, may suggest that tetraploids have a greater ability to avoid local extinction under unfavourable conditions by enhancing biomass allocation into production of seeds at the cost of lower growth. The significant interaction between ploidy level and locality in several traits suggests possible polyfyletic origin of tetraploids and the necessity to clarify the history of the tetraploids in Europe.
- MeSH
- biomasa MeSH
- diploidie MeSH
- ploidie MeSH
- semena rostlinná genetika růst a vývoj MeSH
- semenáček genetika růst a vývoj MeSH
- sympatrie MeSH
- tetraploidie MeSH
- vikev genetika růst a vývoj MeSH
- zahrady MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- biomechanika MeSH
- diploidie MeSH
- geneticky modifikované rostliny MeSH
- gibereliny metabolismus MeSH
- klíčení genetika fyziologie MeSH
- konzervovaná sekvence MeSH
- Lepidium sativum genetika růst a vývoj fyziologie MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- semena rostlinná růst a vývoj MeSH
- teplota MeSH
- vegetační klid genetika fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cryptic pigmentation of prey is often thought to evolve in response to predator-mediated selection, but pigmentation traits can also be plastic, and change with respect to both abiotic and biotic environmental conditions. In such cases, identifying the presence of, and drivers of trait plasticity is useful for understanding the evolution of crypsis. Previous work suggests that cryptic pigmentation of freshwater isopods (Asellus aquaticus) has evolved in response to predation pressure by fish in habitats with varying macrophyte cover and coloration. However, macrophytes can potentially influence the distribution of pigmentation by altering not only habitat-specific predation susceptibility, but also dietary resources and abiotic conditions. The goals of this study were to experimentally test how two putative agents of selection, namely macrophytes and fish, affect the pigmentation of A. aquaticus, and to assess whether pigmentation is plastic, using a diet manipulation in a common garden. We performed two experiments: (a) in an outdoor mesocosm experiment, we investigated how different densities of predatory fish (0/30/60 three-spined stickleback [Gasterosteus aculeatus] per mesocosm) and macrophytes (presence/absence) affected the abundance, pigmentation and body size structure of isopod populations. (b) In a subsequent laboratory experiment, we reared isopods in a common garden experiment on two different food sources (high/low protein content) to test whether variation in pigmentation of isopods can be explained by diet-based developmental plasticity. We found that fish presence strongly reduced isopod densities, particularly in the absence of macrophytes, but had no effect on pigmentation or size structure of the populations. However, we found that isopods showed consistently higher pigmentation in the presence of macrophytes, regardless of fish presence or absence. Our laboratory experiment, in which we manipulated the protein content of the isopods' diet, revealed strong plasticity of pigmentation and weak plasticity of growth rate. The combined results of both experiments suggest that pigmentation of A. aquaticus is a developmentally plastic trait and that multiple environmental factors (e.g. macrophytes, diet and predation) might jointly influence the evolution of cryptic pigmentation of A. aquaticus in nature on relatively short time-scales.
- MeSH
- ekosystém MeSH
- Isopoda * MeSH
- pigmentace MeSH
- predátorské chování MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many exotic plant invaders pose a serious threat to native communities, but little is known about the dynamics of their impacts over time. In this study, we explored the impact of an invasive plant Heracleum mantegazzianum (giant hogweed) at 24 grassland sites invaded for different periods of time (from 11 to 48 years). Native species' richness and productivity were initially reduced by hogweed invasion but tended to recover after ~30 years of hogweed residence at the sites. Hogweed cover declined over the whole period assessed. A complementary common garden experiment suggested that the dynamics observed in the field were due to a negative plant-soil feedback; hogweed survival and biomass, and its competitive ability were lower when growing in soil inocula collected from earlier-invaded grasslands. Our results provide evidence that the initial dominance of an invasive plant species and its negative impact can later be reversed by stabilising processes.
- MeSH
- bolševník fyziologie MeSH
- čas MeSH
- ekosystém * MeSH
- lipnicovité fyziologie MeSH
- půdní mikrobiologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
The invasion success of introduced plants is frequently explained as a result of competitive interactions with native flora. Although previous theory and experiments have shown that plants are largely equivalent in their competitive effects on each other, competitive nonequivalence is hypothesized to occur in interactions between native and invasive species. Small overlap in resource use with unrelated native species, improved competitiveness, and production of novel allelochemicals are all believed to contribute to the invasiveness of introduced species. I tested all three assumptions in a common-garden experiment by examining the effect of plant origin and relatedness on competition intensity. Competitive interactions were explored within 12 triplets, each consisting of an invasive species, a native congeneric (or confamilial) species, and a native heterogeneric species that are likely to interact in the field. Plants were grown in pots alone or in pairs and in the absence or the presence of activated carbon to control for allelopathy. I found that competition intensity was not influenced by the relatedness or origin of competing neighbors. Although some exotic species may benefit from size advantages and species-specific effects in competitive interactions, none of the three mechanisms investigated is likely to be a principal driver of their invasiveness.
- MeSH
- feromony MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- Magnoliopsida MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Individuals reared in captivity are exposed to distinct selection pressures and evolutionary processes causing genetic and phenotypic divergence from wild populations. Consequently, restocking with farmed individuals may represent a considerable risk for the fitness of free-living populations. Supportive breeding on a massive scale has been established in many European countries to increase hunting opportunities for the most common duck species, the mallard (Anas platyrhynchos). It has previously been shown that mallards from breeding facilities differ genetically from wild populations and there is some indication of morphological differences. Using a common-garden experiment, we tested for differences in growth parameters between free-living populations and individuals from breeding facilities during the first 20 days of post-hatching development, a critical phase for survival in free-living populations. In addition, we compared their immune function by assessing two haematological parameters, H/L ratio and immature erythrocyte frequency, and plasma complement activity. Our data show that farmed ducklings exhibit larger morphological parameters, a higher growth rates, and higher complement activity. In haematological parameters, we observed high dynamic changes in duckling ontogeny in relation to their morphological parameters. In conclusion, our data demonstrate pronounced phenotype divergence between farmed and wild mallard populations that can be genetically determined. We argue that this divergence can directly or indirectly affect fitness of farmed individuals introduced to the breeding population as well as fitness of farmed x wild hybrids.
- MeSH
- chov MeSH
- divoká zvířata růst a vývoj imunologie MeSH
- farmy MeSH
- fenotyp MeSH
- kachny růst a vývoj imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
In ephemeral habitats, the same genotypes cope with unpredictable environmental conditions, favouring the evolution of developmental plasticity and alternative life-history strategies (ALHS). We tested the existence of intrapopulation ALHS in an annual killifish, Nothobranchius furzeri, inhabiting temporary pools. The pools are either primary (persisting throughout the whole rainy season) or secondary (refilled after desiccation of the initial pool), representing alternative niches. The unpredictable conditions led to the evolution of reproductive bet-hedging with asynchronous embryonic development. We used a common garden experiment to test whether the duration of embryonic period is associated with post-embryonic life-history traits. Fish with rapid embryonic development (secondary pool strategy, high risk of desiccation) produced phenotypes with more rapid life-history traits than fish with slow embryonic development (primary pool strategy). The fast fish were smaller at hatching but had larger yolk sac reserves. Their post-hatching growth was more rapid, and they matured earlier. Further, fast fish grew to a smaller body size and died earlier than slow fish. No differences in fecundity, propensity to mate or physiological ageing were found, demonstrating a combination of plastic responses and constraints. Such developmentally related within-population plasticity in life history is exceptional among vertebrates.
- MeSH
- analýza přežití MeSH
- ekosystém * MeSH
- fenotyp MeSH
- fertilita fyziologie MeSH
- Fundulidae embryologie růst a vývoj fyziologie MeSH
- rybníky MeSH
- velikost těla fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
Whole genome duplication is a key process in plant evolution and has direct phenotypic consequences. However, it remains unclear whether ploidy-related phenotypic changes can significantly alter the fitness of polyploids in nature and thus contribute to establishment of new polyploid mutants in diploid populations. We addressed this question using a unique natural system encompassing a diploid and its sympatric locally established autotetraploid derivative. By setting a common garden experiment with two manipulated environmental factors (presence/absence of serpentine substrate and competition), we tested whether these two locally important factors differently shape the phenotypic response of the two ploidy levels. Tetraploids attained significantly higher values of both above- and below-ground biomass, and root : shoot ratio compared to their diploid progenitors. Tetraploid superiority in vegetative fitness indicators was most prominent when they were cultivated together with a competitor in nutrient-rich nonserpentine substrate. We show that even genetically very closely related diploids and tetraploids can respond differently to key environmental factors. Provided there are sufficient nutrients, tetraploids can be more successful in tolerating interspecific competition than their diploid progenitors. Such superior performance might have provided an adaptive advantage for the newly established tetraploid promoting colonisation of new (micro-)habitats, which was indeed observed at the natural site.
Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species' natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system.