Cryo-TEM Dotaz Zobrazit nápovědu
Liposomes are used for in vitro or in vivo vectorization of drugs, proteins, or nucleic acids. However, the main problem with the application of liposomes for this purpose is their low stability in contact with blood serum. In this article, interactions between the whole serum and anionic liposomes, both bare and covered with strong polycations, were studied. The polycations of different chemical structures were prepared by the modification of poly(allylamine hydrochloride) (PAH). Dynamic light scattering (DLS), zeta potential and transmission cryo-electron microscopy (cryo-TEM) measurements showed that the adsorption of the polycations on the anionic liposomes induced a reversible aggregation of vesicles. The stable isolated polyelectrolyte-covered vesicles were obtained after the addition of sufficient amounts of the polycations. The effect of full serum on the morphology and stability of the polycation-coated liposomes was studied using cryo-TEM and a fluorescence method. The cryo-TEM analysis revealed that the introduction of serum caused the osmotic-driven destabilization of the bare liposomes or formation of twinned vesicles. Due to these processes the liposomes lost most of their content immediately after serum addition. The polycation-covered liposomes showed improved stability in the presence of serum. Partial deflation of the vesicles was observed, however, the loss of the content was significantly limited. The effect of the polymer structure, especially the position of the charged groups with respect to the main polymer backbone, on the stabilization of the polycation-covered liposomes in the presence of serum was discussed.
- MeSH
- elektrolyty chemie MeSH
- elektronová kryomikroskopie * MeSH
- fluoresceiny metabolismus MeSH
- fosfatidylcholiny chemie MeSH
- hydrodynamika MeSH
- liposomy chemie ultrastruktura MeSH
- polyaminy chemie MeSH
- polymery chemie MeSH
- sérum chemie MeSH
- skot MeSH
- statická elektřina MeSH
- tlak MeSH
- transmisní elektronová mikroskopie * MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Image processing in cryogenic electron tomography (cryoET) is currently at a similar state as Single Particle Analysis (SPA) in cryogenic electron microscopy (cryoEM) was a few years ago. Its data processing workflows are far from being well defined and the user experience is still not smooth. Moreover, file formats of different software packages and their associated metadata are not standardized, mainly since different packages are developed by different groups, focusing on different steps of the data processing pipeline. The Scipion framework, originally developed for SPA (de la Rosa-Trevín et al., 2016), has a generic python workflow engine that gives it the versatility to be extended to other fields, as demonstrated for model building (Martínez et al., 2020). In this article, we provide an extension of Scipion based on a set of tomography plugins (referred to as ScipionTomo hereafter), with a similar purpose: to allow users to be focused on the data processing and analysis instead of having to deal with multiple software installation issues and the inconvenience of switching from one to another, converting metadata files, managing possible incompatibilities, scripting (writing a simple program in a language that the computer must convert to machine language each time the program is run), etcetera. Additionally, having all the software available in an integrated platform allows comparing the results of different algorithms trying to solve the same problem. In this way, the commonalities and differences between estimated parameters shed light on which results can be more trusted than others. ScipionTomo is developed by a collaborative multidisciplinary team composed of Scipion team engineers, structural biologists, and in some cases, the developers whose software packages have been integrated. It is open to anyone in the field willing to contribute to this project. The result is a framework extension that combines the acquired knowledge of Scipion developers in close collaboration with third-party developers, and the on-demand design of functionalities requested by beta testers applying this solution to actual biological problems.
The advances in electron cryo-microscopy have enabled high-resolution structural studies of vitrified macromolecular complexes in situ by cryo-electron tomography (cryo-ET). Since utilization of cryo-ET is generally limited to the specimens with thickness < 500 nm, a complex sample preparation protocol to study larger samples such as single eukaryotic cells by cryo-ET was developed and optimized over the last decade. The workflow is based on the preparation of a thin cellular lamella by cryo-focused ion beam milling (cryo-FIBM) from the vitrified cells. The sample preparation protocol is a multi-step process which includes utilization of several high-end instruments and comprises sample manipulation prone to sample deterioration. Here, we present a workflow for preparation of three different model specimens that was optimized to provide high-quality lamellae for cryo-ET or electron diffraction tomography with high reproducibility. Preparation of lamellae from large adherent mammalian cells, small suspension eukaryotic cell line, and protein crystals of intermediate size is described which represents examples of the most frequently studied samples used for cryo-FIBM in life sciences.
- MeSH
- buňky ultrastruktura MeSH
- elektronová kryomikroskopie metody MeSH
- ionty MeSH
- makromolekulární látky ultrastruktura MeSH
- molekulární biologie metody MeSH
- odběr biologického vzorku metody MeSH
- proteiny ultrastruktura MeSH
- průběh práce MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae ultrastruktura MeSH
- tomografie elektronová metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
- MeSH
- algoritmy MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky chemie MeSH
- metoda Monte Carlo MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- ribozomy chemie MeSH
- stochastické procesy * MeSH
- tomografie elektronová metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.
- MeSH
- buněčné kultury MeSH
- buňky MDCK MeSH
- Chlamydomonas metabolismus ultrastruktura MeSH
- cilie metabolismus ultrastruktura MeSH
- elektronová kryomikroskopie MeSH
- exprese genu MeSH
- lidé MeSH
- mikrofilamenta metabolismus ultrastruktura MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- proteiny asociované s mikrotubuly genetika metabolismus MeSH
- psi MeSH
- tomografie elektronová MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extracellular vesicles (EVs) are membranous structures in biofluids with enormous diagnostic/prognostic potential for application in liquid biopsies. Any such downstream application requires a detailed characterization of EV concentration, size and morphology. This study aimed to observe the native morphology of EVs in human cerebrospinal fluid after traumatic brain injury. Therefore, they were separated by gravity-driven size-exclusion chromatography (SEC) and investigated by atomic force microscopy (AFM) in liquid and cryogenic transmission electron microscopy (cryo-TEM). The enrichment of EVs in early SEC fractions was confirmed by immunoblot for transmembrane proteins CD9 and CD81. These fractions were then pooled, and the concentration and particle size distribution were determined by Tunable Resistive Pulse Sensing (around 1010 particles/mL, mode 100 nm) and Nanoparticle Tracking Analysis (around 109 particles/mL, mode 150 nm). Liquid AFM and cryo-TEM investigations showed mode sizes of about 60 and 90 nm, respectively, and various morphology features. AFM revealed round, concave, multilobed EV structures; and cryo-TEM identified single, double and multi-membrane EVs. By combining AFM for the surface morphology investigation and cryo-TEM for internal structure differentiation, EV morphological subpopulations in cerebrospinal fluid could be identified. These subpopulations should be further investigated because they could have different biological functions.
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.
- Publikační typ
- časopisecké články MeSH
Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein-protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.
- MeSH
- elektronová kryomikroskopie MeSH
- genové produkty gag chemie genetika ultrastruktura MeSH
- HEK293 buňky MeSH
- HIV-1 chemie genetika ultrastruktura MeSH
- kapsida chemie ultrastruktura MeSH
- krystalografie rentgenová MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- myši MeSH
- proteinové domény MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- tomografie elektronová MeSH
- virion chemie genetika ultrastruktura MeSH
- virové plášťové proteiny chemie genetika ultrastruktura MeSH
- virus myší leukemie chemie genetika ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- srovnávací studie MeSH