Q43129608
Dotaz
Zobrazit nápovědu
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
- MeSH
- fenotyp * MeSH
- glioblastom * patologie genetika metabolismus MeSH
- invazivní růst nádoru * genetika MeSH
- lidé MeSH
- membránové proteiny MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
- MeSH
- exozómy metabolismus MeSH
- fibroblasty asociované s nádorem metabolismus MeSH
- interleukin-6 metabolismus MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory metabolismus MeSH
- parakrinní signalizace MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- buněčný převod mechanických signálů genetika MeSH
- cytoskelet metabolismus patologie ultrastruktura MeSH
- extracelulární matrix metabolismus patologie ultrastruktura MeSH
- integriny genetika metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádory genetika metabolismus patologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- regulace genové exprese MeSH
- skupina kinas odvozených od src-genu genetika metabolismus MeSH
- substrátový protein asociovaný s Crk genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- tyrosinfosfatasy receptorového typu, třída 4 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Hepatocellular carcinoma is a highly aggressive and difficult-to-treat type of cancer. Incorporating urea functionality into the backbone of organoselenium compounds is expected to develop promising chemotherapeutic leads against liver cancer. Methods: Urea-functionalized organoselenium compounds were synthesized in good yields, and their cytotoxicity was evaluated against HepG2 cells. Results: 1,1'-(Diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) exhibited efficient anti-HepG2 activity in sub-micromolar concentrations, with no toxicity to normal human skin fibroblasts. The molecular mechanisms of the diselenide-based urea 14 were evaluated using colony formation, wound healing, 3D spheroid invasion assays, cell cycle analysis and apoptosis induction. Its redox properties were also assessed by using different bioassays. Conclusion: Our study revealed promising anticancer, antimigratory and anti-invasiveness properties of 1,1'-(diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) against HepG2.
- MeSH
- apoptóza účinky léků MeSH
- buňky Hep G2 MeSH
- lidé MeSH
- močovina chemie farmakologie MeSH
- molekulární struktura MeSH
- organoselenové sloučeniny chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cancer cell invasion through tissue barriers is the intrinsic feature of metastasis, the most life-threatening aspect of cancer. Detailed observation and analysis of cancer cell behaviour in a 3D environment is essential for a full understanding of the mechanisms of cancer cell invasion. The inherent limits of optical microscopy resolution do not allow to for in-depth observation of intracellular structures, such as invadopodia of invading cancer cells. The required resolution can be achieved using electron microscopy techniques such as FIB-SEM. However, visualising cells in a 3D matrix using FIB-SEM is challenging due to difficulties with localisation of a specific cell deep within the resin block. We have developed a new protocol based on the near-infrared branding (NIRB) procedure that extends the pattern from the surface grid deep inside the resin. This 3D burned pattern allows for precise trimming followed by targeted 3D FIB-SEM. Here we present detailed 3D CLEM results combining confocal and FIB-SEM imaging of cancer cell invadopodia that extend deep into the collagen meshwork.
- MeSH
- blízká infračervená spektroskopie metody MeSH
- fibrosarkom patologie MeSH
- invazivní růst nádoru MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací metody MeSH
- nádorové buňky kultivované MeSH
- nádory prsu patologie MeSH
- počítačové zpracování obrazu MeSH
- podozomy patologie MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
- MeSH
- COVID-19 komplikace patologie virologie MeSH
- internalizace viru účinky léků MeSH
- lidé MeSH
- modulátory estrogenních receptorů metabolismus farmakologie terapeutické užití MeSH
- nádory prsu komplikace farmakoterapie patologie MeSH
- proteiny virové matrix antagonisté a inhibitory metabolismus MeSH
- receptory pro estrogeny chemie metabolismus MeSH
- replikace viru účinky léků MeSH
- SARS-CoV-2 účinky léků izolace a purifikace fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVES: To assess whether regulatory guidance on the use of dexamethasone in hospitalised COVID-19 patients is applicable to the larger population of COVID-19 cases. The surge in worldwide demand for dexamethasone suggests that the guidance, although correct, has not emphasised the danger of its wider use. STUDY DESIGN: Data from the Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial and the World Health Organisation (WHO) prospective meta-analysis have been deconstructed and analysed. METHODS: To provide context, relevant publications were identified in PubMed using the following keywords: COVID-19, RECOVERY trial, WHO meta-analysis, variants, immunity, public health. RESULTS: The WHO guidance 'Corticosteroids for COVID-19' was based on their prospective meta-analysis. This meta-analysis was weighted by data from the RECOVERY trial. CONCLUSIONS: In terms of COVID-19, dexamethasone has value in a narrow indication, namely, in hospitalised patients requiring respiratory support. The media blitz likely resulted in the wider use of dexamethasone in outpatients and as a preventive medication. This is reflected in the surge in worldwide demand for dexamethasone. We ask whether the use of steroids, beyond regulatory indications, may be responsible for the recent increase in mortality and especially the emergence of mucormycosis? From the public health standpoint, the current guidance for use of dexamethasone in COVID-19 could benefit from clarification and the addition of a cautionary note.
- MeSH
- COVID-19 * MeSH
- hormony kůry nadledvin MeSH
- lidé MeSH
- prospektivní studie MeSH
- SARS-CoV-2 MeSH
- veřejné zdravotnictví MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
COVID-19 is a transmissible respiratory disease caused by coronavirus SARS-CoV-2, which is similar to SARS or MERS. Its increased severity was noted in aged patients usually over 65 years of age. Children and young people have an asymptomatic or mild course of the disease.Unfortunately, the number of children with problems after mild or asymptomatic COVID-19 recovery is increasing and their troubles resemble Kawasaki disease, although the laboratory findings seem to be different. This condition is called pediatric inflammatory multisystem syndrome (PIMS), and it is a new disease seen in children directly influenced by previous SARS-CoV-2 infection. The literature reports that PIMS typically follows 2-4 weeks after SARS-CoV-2 infection. The clinical symptoms of the affected children are extremely complex, ranging from gastrointestinal to cardiovascular problems with frequent skin and mucosal manifestations, and without intensive treatment they can be fatal. The exact causes of PIMS are recently unknown, however, it is explained as hyperactivation of immunity.In this minireview, we summarize data on the prominent role of the IL-6-IL-6R-STAT3 axis in PIMS aetiopathogenesis. Therapeutic manipulation of IL-6 or IL-6 receptor could be an approach to the treatment of children with severe PIMS.
- MeSH
- COVID-19 komplikace etiologie patofyziologie MeSH
- cytokiny * MeSH
- dítě MeSH
- interleukin-6 * MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- syndrom systémové zánětlivé reakce etiologie patofyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid-mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.
- MeSH
- buněčná diferenciace účinky léků genetika MeSH
- fenotyp MeSH
- genová ontologie MeSH
- imidazoly farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- kolagen metabolismus MeSH
- lidé MeSH
- melanom genetika patologie MeSH
- mitogenem aktivované proteinkinasy p38 antagonisté a inhibitory metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí účinky léků genetika MeSH
- naftaleny farmakologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proliferace buněk účinky léků genetika MeSH
- pyrazoly farmakologie MeSH
- pyridiny farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- sekvenování transkriptomu metody MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
- MeSH
- buněčná smrt účinky léků MeSH
- buňky PC-3 MeSH
- chelátory železa aplikace a dávkování MeSH
- deferoxamin aplikace a dávkování MeSH
- hem metabolismus MeSH
- karcinogeneze účinky léků MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie účinky léků MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- tumor burden účinky léků MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH