Q46633802
Dotaz
Zobrazit nápovědu
The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
- MeSH
- adipozita * MeSH
- bílá tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků * MeSH
- leptin * krev metabolismus MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- novorozená zvířata MeSH
- obezita * metabolismus MeSH
- tělesná hmotnost MeSH
- tuková tkáň metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.
- MeSH
- bílá tuková tkáň účinky léků MeSH
- dieta s vysokým obsahem tuků MeSH
- endoteliální buňky účinky léků MeSH
- makrofágy účinky léků patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- proliferace buněk účinky léků MeSH
- tukové buňky cytologie účinky léků MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To achieve optimal development of a newborn, breastfeeding is extensively recommended, but little is known about the role of non-nutritive bioactive milk components. We aimed to characterize the fatty acid esters of hydroxy fatty acids (FAHFAs), namely palmitic acid hydroxystearic acids (PAHSAs)-endogenous lipids with anti-inflammatory and anti-diabetic properties, in human breast milk. Breast milk samples from 30 lean (BMI=19-23) and 23 obese (BMI>30) women were collected 72h postpartum. Adipose tissue and milk samples were harvested from C57BL/6J mice. FAHFA lipid profiles were measured using reverse phase and chiral liquid chromatography-mass spectrometry method. PAHSA regioisomers as well as other FAHFAs were present in both human and murine milk. Unexpectedly, the levels of 5-PAHSA were higher relative to other regioisomers. The separation of both regioisomers and enantiomers of PAHSAs revealed that both R- and S-enantiomers were present in the biological samples, and that the majority of the 5-PAHSA signal is of R configuration. Total PAHSA levels were positively associated with weight gain during pregnancy, and 5-PAHSA as well as total PAHSA levels were significantly lower in the milk of the obese compared to the lean mothers. Our results document for the first time the presence of lipid mediators from the FAHFA family in breast milk, while giving an insight into the stereochemistry of PAHSAs. They also indicate the negative effect of obesity on 5-PAHSA levels. Future studies will be needed to explore the role and mechanism of action of FAHFAs in breast milk.
- MeSH
- dospělí MeSH
- kyseliny palmitové metabolismus MeSH
- lidé MeSH
- mateřské mléko metabolismus MeSH
- myši MeSH
- obezita metabolismus MeSH
- průřezové studie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24 weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF + F). Overweight/obese, T2DM patients on metformin therapy were given for 24 weeks corn oil (Placebo; 5 g/day) or n-3 PUFA concentrate as above (Omega-3; 5 g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF + F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF + F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.
- MeSH
- bílá tuková tkáň metabolismus MeSH
- diabetes mellitus 2. typu krev dietoterapie metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- dospělí MeSH
- endokanabinoidy krev metabolismus MeSH
- glukosa metabolismus MeSH
- krevní glukóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- obezita krev dietoterapie etiologie metabolismus MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- potravní doplňky * MeSH
- randomizované kontrolované studie jako téma MeSH
- senioři MeSH
- tělesná hmotnost MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Identification of genes responsible for BAT function would shed light on underlying pathophysiological mechanisms of metabolic disturbances. Recent linkage analysis in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), identified two closely linked quantitative trait loci (QTL) associated with glucose oxidation and glucose incorporation into BAT lipids in the vicinity of Wars2 (tryptophanyl tRNA synthetase 2 (mitochondrial)) gene on chromosome 2. The SHR harbors L53F WARS2 protein variant that was associated with reduced angiogenesis and Wars2 thus represents a prominent positional candidate gene. In the current study, we validated this candidate as a quantitative trait gene (QTG) using transgenic rescue experiment. SHR-Wars2 transgenic rats with wild type Wars2 gene when compared to SHR, showed more efficient mitochondrial proteosynthesis and increased mitochondrial respiration, which was associated with increased glucose oxidation and incorporation into BAT lipids, and with reduced weight of visceral fat. Correlation analyses in RI strains showed that increased activity of BAT was associated with amelioration of insulin resistance in muscle and white adipose tissue. In summary, these results demonstrate important role of Wars2 gene in regulating BAT function and consequently lipid and glucose metabolism.
- MeSH
- energetický metabolismus * genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- glukosa metabolismus MeSH
- hnědá tuková tkáň metabolismus patologie MeSH
- kultivované buňky MeSH
- lokus kvantitativního znaku MeSH
- metabolismus lipidů MeSH
- mitochondrie metabolismus MeSH
- mutace * MeSH
- nitrobřišní tuk metabolismus patofyziologie MeSH
- obezita genetika metabolismus patofyziologie MeSH
- potkani inbrední SHR MeSH
- tryptofan-tRNA-ligasa genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The marine n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert numerous beneficial effects on health, but their potency to improve treatment of type 2 diabetic (T2D) patients remains poorly characterized. We aimed to evaluate the effect of a combination intervention using EPA + DHA and the insulin-sensitizing drug pioglitazone in overweight/obese T2D patients already treated with metformin. METHODS: In a parallel-group, four-arm, randomized trial, 69 patients (66 % men) were assigned to 24-week-intervention using: (i) corn oil (5 g/day; Placebo), (ii) pioglitazone (15 mg/day; Pio), (iii) EPA + DHA concentrate (5 g/day, containing ~2.8 g EPA + DHA; Omega-3), or (iv) pioglitazone and EPA + DHA concentrate (Pio& Omega-3). Data from 60 patients were used for the final evaluation. At baseline and after intervention, various metabolic markers, adiponectin and cytokines were evaluated in serum using standard procedures, EPA + DHA content in serum phospholipids was evaluated using shotgun lipidomics and mass spectrometry, and hyperinsulinemic-euglycemic clamp and meal test were also performed. Indirect calorimetry was conducted after the intervention. Primary endpoints were changes from baseline in insulin sensitivity evaluated using hyperinsulinemic-euglycemic clamp and in serum triacylglycerol concentrations in fasting state. Secondary endpoints included changes in fasting glycemia and glycated hemoglobin (HbA1c), changes in postprandial glucose, free fatty acid and triacylglycerol concentrations, metabolic flexibility assessed by indirect calorimetry, and inflammatory markers. RESULTS: Omega-3 and Pio& Omega-3 increased EPA + DHA content in serum phospholipids. Pio and Pio& Omega-3 increased body weight and adiponectin levels. Both fasting glycemia and HbA1c were increased by Omega-3, but were unchanged by Pio& Omega-3. Insulin sensitivity was not affected by Omega-3, while it was improved by Pio& Omega-3. Fasting triacylglycerol concentrations and inflammatory markers were not significantly affected by any of the interventions. Lipid metabolism in the meal test and metabolic flexibility were additively improved by Pio& Omega-3. CONCLUSION: Besides preventing a modest negative effect of n-3 fatty acids on glycemic control, the combination of pioglitazone and EPA + DHA can be used to improve lipid metabolism in T2D patients on stable metformin therapy. TRIAL REGISTRATION: EudraCT number 2009-011106-42.
- Publikační typ
- časopisecké články MeSH