Q96054825
Dotaz
Zobrazit nápovědu
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Magnetoferritin is a metalloprotein composed of a protein coat (apoferritin) surrounding the magnetic iron oxide nanoparticles. Physicochemical characterization of magnetic, structural and morphological properties, size distribution and stability of magnetoferritin have been extensively investigated. Magneto-optical properties of magnetic nanoparticles in magnetoferritin can be applied in in vivo diagnosis of various diseases associated with the formation of magnetite in pathological processes in tissues. In addition, the confirmed peroxidase activity enables magnetoferritin to be used in important bioapplications.
- Klíčová slova
- magnetoferritin, magnetit, magneto-optické vlastnosti,
- MeSH
- apoferritiny * farmakologie chemie MeSH
- nanočástice MeSH
- oxidace-redukce MeSH
- oxidy farmakologie chemie MeSH
- železo farmakologie chemie MeSH
- Publikační typ
- práce podpořená grantem MeSH
Nearly monodispersed superparamagnetic maghemite nanoparticles (15-20nm) were prepared by a one-step thermal decomposition of iron(II) acetate in air at 400 degrees C. The presented synthetic route is simple, cost effective and allows to prepare the high-quality superparamagnetic particles in a large scale. The as-prepared particles were exploited for the development of magnetic nanocomposites with the possible applicability in medicine and biochemistry. For the purposes of the MRI diagnostics, the maghemite particles were simply dispersed in the bentonite matrix. The resulting nanocomposite represents very effective and cheap oral negative contrast agent for MRI of the gastrointestinal tract and reveals excellent contrast properties, fully comparable with those obtained for commercial contrast material. The results of the clinical research of this maghemite-bentonite contrast agent for imaging of the small bowel are discussed. For biochemical applications, the primary functionalization of the prepared maghemite nanoparticles with chitosan was performed. In this way, a highly efficient magnetic carrier for protein immobilization was obtained as demonstrated by conjugating thermostable raffinose-modified trypsin (RMT) using glutaraldehyde. The covalent conjugation resulted in a further increase in trypsin thermostability (T(50)=61 degrees C) and elimination of its autolysis. Consequently, the immobilization of RMT allowed fast in-solution digestion of proteins and their identification by MALDI-TOF mass spectrometry.
- MeSH
- difrakce rentgenového záření MeSH
- enzymy imobilizované MeSH
- financování organizované MeSH
- gastrointestinální trakt patologie MeSH
- kontrastní látky MeSH
- magnetická rezonanční tomografie MeSH
- mikroskopie elektronová rastrovací MeSH
- transmisní elektronová mikroskopie MeSH
- trypsin MeSH
- železité sloučeniny MeSH