Injekce, ať již ve formě podávání léčiv do nejrůznějších částí organismu nebo jako prostředek pro odebírání kapalin z těla, patří mezi základní medicínské úkony. Cesta k dnešnímu bezpečnému a prakticky bezbolestnému injekčnímu zásahu byla ale dlouhá a komplikovaná. Již antičtí autoři si povšimli, že bodnutí hmyzem či popálení rostlinami může mít vliv na celého člověka. Nicméně teprve v 17. století se objevují první pokusy o zavedení kapalin do krevního řečiště. Zlomový byl roku 1656, v němž anglický lékař a stavitel Christopher Wren poprvé úspěšně podal chemické látky (opium, antimonovou sloučeninu a alkohol) živému organismu, konkrétně psům. První experimenty s injekčním podáním člověku uskutečnil v roce 1661 německý lékař a chemik Johann Sigismund Elsholtz, a následně vydal i první dílo o možnostech injekčního podávání Clysmatica nova, v němž si jako první uvědomil možnost ovlivnění fyziologického stavu organismu pomocí takto podaných látek. Nicméně četné nehody, způsobené technickými problémy a zejména nesterilním podáváním, měly za následek dočasné opadnutí zájmu o tuto metodu. Teprve v průběhu 19. století se podařilo vyřešit problém sterilizace a vyvinout uspokojivě fungující injekční stříkačku. Velký podíl na tom měli francouzský chirurg Charles Pravaz a skotský lékař Alexander Wood. V průběhu 20. století byla vynalezena další injekční zařízení, umožňující i autoinjektáž pacientem. S rozvojem injekční techniky podávání léčiv se ale objevil i fenomén strachu z injekce, trypanofobie.
Injections are one of the most basic medical procedures, whether in the form of administering drugs to various parts of the body or as a means of removing fluids from the body. However, the road to today’s safe and virtually painless injections has been long and complicated. As early as ancient scholars noted that insect stings or plant burns could affect the whole organism. However, it was not until the 17th century that the first attempts to introduce fluids into the bloodstream appeared. A breakthrough came in 1656, in which the English physician and architect Chris- topher Wren for the first time successfully administered chemicals (opium, an antimony compound, and alcohol) to a living organism, namely dogs. The German physician and chemist Johann Sigismund Elsholtz carried out the first experiments with injection into humans in 1661, and subsequently published the first work on the possibilities of injection, Clysmatica nova, in which he also first realized the possibility of influencing the physiological state of the organism through such administered substances. However, due to technical problems and, in particular, non-sterile administration numerous accidents at injection administration resulted in a temporary decline in interest in this method. It was only during the 19th century that the problem of sterilization was solved and a satisfactory syringe was developed, with the French surgeon Charles Pravaz and the Scottish physician Alexander Wood making a major contribution. During the 20th century, other injection devices appeared, allowing also auto-injection by the patient. However, with the development of injection techniques for drug administration, the phenomenon of fear of injection, trypanophobia, also emerged.
Mosquitoes (Diptera: Culicidae) act as vectors of medical and veterinary importance, due to their ability to transmit many pathogens and parasites. Renewed interest has been recently devoted to the potential of sterile insect technique (SIT) for mosquito suppression. However, the success of the SIT is mostly dependent on the ability of sterile males to compete for mates with the wild ones in the field. Nevertheless, little is known on the sexual chemical ecology of mosquitoes, with special reference to the role of chemical signals in males. We reviewed the current knowledge on mosquito sexual chemical ecology and other key cues affecting courtship and mating behavior. The information available on the aggregation and sex pheromones in mosquito males is rather limited. To the best of our knowledge, the components of the aggregation pheromone stimulating swarming mechanisms have been fully characterized only for Aedes aegypti, while evidence for aggregation pheromones in other mosquito species remains elusive. Further research on this issue is needed, as well as to dissect the relative importance of visual (with special reference to swarming landmarks), vibrational, olfactory and tactile cues perceived during swarming and mate. On the other hand, more knowledge is available for cuticular hydrocarbons, which modulate mating behavior in several species of economic importance. These compounds, coupled with volatile aggregation components, have potential interest for the development of monitoring and trapping systems. In addition, the analyses of cuticular hydrocarbons are essential for discrimination between closely related mosquito species and/or populations.
- MeSH
- Aedes physiology MeSH
- Pest Control, Biological methods MeSH
- Culicidae physiology MeSH
- Pheromones physiology MeSH
- Infertility MeSH
- Mosquito Vectors * MeSH
- Mosquito Control methods MeSH
- Reproduction MeSH
- Sexual Behavior, Animal * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the females. The greatest number of options might eventually be available for those who can use transgenic mosquitoes, but the inherent characteristics of the target species may also provide possibilities for interim measures until more efficient methods can be developed. Differences in intrinsic size, in behaviour and in development rate between females and males are often available and useful for sexing. Efficient species-specific systems for eliminating females at the embryo stage have been developed, but most have since been discarded due to lack of use. Ideal systems specifically kill female embryos using some treatment that can be manipulated during production. Such killing systems are far more efficient than using intrinsic sexual differences, but they systems require selectable genetic markers and sex-linkage created by rare random chromosomal rearrangements. While intrinsic sexual differences should not be considered as long-term candidates for the development of robust and efficient sexing approaches, in the absence of these, the accessibility and integration of less efficient systems can provide a stop-gap measure that allows rapid start up with a minimum of investment. The International Atomic Energy Agency is funding over a 5 year period (2013-2018) a new Coordinated Research Project on "Exploring Genetic, Molecular, Mechanical and Behavioural Methods of Sex Separation in Mosquitoes" to network researchers and to address the critical need of genetic sexing strains for the implementation of the sterile insect technique (using radiation-sterilised or transgenic male mosquitoes) and for insect incompatibility technique programmes against disease-transmitting mosquitoes.
- MeSH
- Pest Control, Biological methods MeSH
- Culicidae genetics growth & development MeSH
- Insect Vectors * MeSH
- Molecular Biology MeSH
- Mosquito Control methods MeSH
- Sex Characteristics MeSH
- Sterilization methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The medfly (Ceratitis capitata) is one of the major agricultural pests controlled through sterile insect technique (SIT) programs. We studied the chemical composition of the volatiles released by calling males from one laboratory and two wild C. capitata populations using two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC/TOFMS) and gas chromatography with electroantennographic detection (GC-EAD). Multivariate data analyses revealed significant differences in the quantitative and qualitative composition of male chemical emanations between the three populations. The GC-EAD analyses of the male emanation of three C. capitata populations revealed 14 antenally active compounds. The volatiles isomenthone, β-pinene, ethyl octanoate, indole, geraniol, bornyl acetate, geranyl acetone, and (E)-caryophyllene are newly reported EAD active constituents of the male pheromone. GC-EAD analyses of the laboratory population indicated that the males and females of C. capitata possess comparable sensitivity to male-produced volatiles. Our results are relevant to the development of a pheromone-based monitoring system and also to the SIT control program.
- MeSH
- Ceratitis capitata metabolism MeSH
- Chromatography, Gas MeSH
- Mass Spectrometry MeSH
- Animals, Laboratory MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Sex Attractants chemistry MeSH
- Volatile Organic Compounds analysis MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Genetické modifikace (GM) hmyzu zahrnují řadu metod vedoucích k odstranění (umlčení) určitého genu (nejčastěji pomocí RNAi, nebo knockouť genu) nebo vnesení cizorodého genu (hlavně pomocí transpozonů, z nichž je nejznámější systém P-elementů). V obou případech se úspěšnost GM sleduje pomocí exprese „marker" genů (dnes většinou „green fluorescent protein"). Pro drozofilu jsou dostupné další techniky a zejména velké banky různých mutací. Systém cis elementu UAS („Upstream Activation Sequence") a jeho aktivátoru Gal4 umožňuje exprimovat vnesený gen v určitých buňkách či orgánech. Genetické modifikace u drozofily i dalších modelových druhů hmyzu se používají jako prostředek pro objasnění vývojových a fyziologických regulací, včetně poruch, které napodobují lidská onemocnění. GM mohou také omezit rozmnožování, nebo způsobit úhyn škodlivého hmyzu. Tato technika by však vyžadovala vypouštění GM hmyzu do přírody a to je v současnosti nemožné. Prakticky významné jsou však GM využívané v chovech hmyzu, který je po sterilizaci vypouštěn do přírody, aby svým přečíslením podstatně snížil rozmnožování přírodní populace (tzv. „sterile insect technice", SIT).
Genetic modifications of insects include diverse methods of gene silencing, such as gene knockdown or RNAi, and methods of transgenesis when a foreign gene is introduced into insect genome, usually with the aid of transponsons such as the P elements. The success of GM is typically visualized through expression of a gene encoding the green fluorescent protein or another marker. Additional techniques and also large banks of diverse mutations are available for drosophila. The system of UAS (Upstream Activation Sequence) and its transcription activator Gal4 allows in this species transgene expression in certain cells and organs. Genetic modifications of drosophila and other model insect species provide efficient tool for elucidating developmental and physiological regulations, including defects mimicking human diseases. GM can also be used to curb insect reproduction or survival. Practical deployment of this approach, however, would require release of GM insects into the environment and this would hardly be permitted. On the other hand, GMs restricted to insect cultures are practically exploited in the sterile insect technique (SIT), when sterilized, non-GM insects are released into the field and due to their high numbers and random mating suppress the growth of the native wild population.
- Keywords
- umlčení genů, transgeneze, P-elementy, Piggy bag, GFP, UAS/Gal4, vypouštění sterilních samců,
- MeSH
- Financing, Organized MeSH
- Animals, Genetically Modified genetics MeSH
- Insecta genetics MeSH
- Gene Expression Regulation genetics MeSH
- RNA Interference MeSH
- Gene Transfer Techniques MeSH
- Transgenes physiology genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
... The Genetics of Mitochondria and Chloroplasts 496 Molecular Genetic Analysis -- Chapter 20 The Techniques ... ... Chromosomes 139 The Human Karyotype 141 Cytogenetic Variation: An Overview 142 Polyploidy 143 -- Sterile ... ... in Experimental Organisms 191 Tetrad Analysis to Detect Linkage in Fungi 191 Balancer Chromosome Technique ... ... to Assign a Gene to a Chromosome in Drosophila 194 Specialised Mapping Techniques 196 -- Centromere ... ... OF MOLECULAR GENETICS 517 Treatment of Pituitary Dwarfism with Human Growth Hormone 517 Basic Techniques ...
2nd ed. xviii, 876 s. : il.
... Scanning Tunneling Microscope Can Observe Individual Atoms on the Surface of Samples 51 Microscopic Techniques ... ... 197 -- Key Concepts 197 A Glimpse of History 198 Introduction 198 Approaches to Control 198 -- Sterilization ... ... by Filtration 203 -- Perspective 9.1: Some Materials Can Be Sterilized by Temperatures Below Boiling ... ... and Disinfecting Techniques 212 -- Perspective 9.7: Use of Radiation for Disinfecting and Sterilizing ... ... Ophthalmia, May Be Mediated by Delayed Hypersensitivity 394 -- Immunology and Diagnostic Testing Techniques ...
XXVIII, 812 s. : il. ; 32 cm
... Anaphylactic Shock, 52; Physiology, 52; Symptoms, 52, Diagnosis, 53; Treatment, 53; Allergic Reactions to Insect ... ... Stings and Bites, 53; Etiology, 54; Symptoms, 54; Treatment, 54; Prognosis, 55; Biting Insects, 55; ... ... TREATMENT 133 -- General Principles, 133; Indication for Injection Treatment, 134; -- Results, 134; Technique ... ... Standardization, 285; Group Antigens, 285; Dilution of Extracts, 286; Preparation of Dust Extract, 286; Sterilization ... ... by Filtration, 287; -- Sterility Tests, 288. ...
[2] l. obr. příl., 296 s. : il., tab. ; 26 cm