Stimulus representations
Dotaz
Zobrazit nápovědu
According to recent evidence, neurophysiological processes coupled to pain are closely related to the mechanisms of consciousness. This evidence is in accordance with findings that changes in states of consciousness during hypnosis or traumatic dissociation strongly affect conscious perception and experience of pain, and markedly influence brain functions. Past research indicates that painful experience may induce dissociated state and information about the experience may be stored or processed unconsciously. Reported findings suggest common neurophysiological mechanisms of pain and dissociation and point to a hypothesis of dissociation as a defense mechanism against psychological and physical pain that substantially influences functions of consciousness. The hypothesis is also supported by findings that information can be represented in the mind/brain without the subject's awareness. The findings of unconsciously present information suggest possible binding between conscious contents and self-functions that constitute self-representational dimensions of consciousness. The self-representation means that certain inner states of own body are interpreted as mental and somatic identity, while other bodily signals, currently not accessible to the dominant interpreter's access are dissociated and may be defined as subliminal self-representations. In conclusion, the neurophysiological aspects of consciousness and its integrative role in the therapy of painful traumatic memories are discussed.
- MeSH
- bolest patofyziologie psychologie MeSH
- disociační poruchy psychologie MeSH
- financování organizované MeSH
- hypnóza MeSH
- lidé MeSH
- neurofyziologie MeSH
- podprahová stimulace MeSH
- pozornost MeSH
- práh bolesti psychologie MeSH
- vědomí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
BACKGROUND: For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. RESULTS: First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. CONCLUSIONS: Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions.
- MeSH
- bulbus olfactorius * MeSH
- čich MeSH
- myši MeSH
- nervové receptory MeSH
- podněty MeSH
- stereotypní chování MeSH
- vomeronazální orgán MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hippocampal activity is thought to encode spatial representations in a distributed associative network. This idea predicts that partial hippocampal lesions would spare acquisition and impair retrieval of a place response as long as enough connections remained intact to encode associations. Water maze experiments supported the predictions, but the prediction of impaired retrieval was not supported when tetrodotoxin (TTX) was injected into one hippocampus and rats were tested in a place avoidance task on a rotating arena with shallow water. The rotation dissociated relevant distal stimuli from irrelevant self-motion stimuli. To explain the discrepancy, we hypothesized that the segregation of relevant and irrelevant stimuli and stimuli association into representations are distinct hippocampus-dependent operations, and whereas associative representation is more sensitive to disruption during retrieval than learning, stimulus segregation is more sensitive to disruption during learning than during retrieval. The following predictions were tested: (1) the TTX injection would spare learning but (2) impair retrieval of a place response in the water maze, which has a high associative representational demand but a low demand for segregation; (3) the injection would impair learning but (4) spare retrieval of place avoidance in the rotating arena filled with water, which has a high demand for stimulus segregation but a low associative representational demand. All four predictions were confirmed. The hypothesis also explains the pattern of sparing and impairment after the TTX injection in other place avoidance task variants, leading us to conclude that stimulus separation and association representation are dissociable functions of the hippocampus.
- MeSH
- analýza rozptylu MeSH
- anestetika lokální toxicita MeSH
- bludiště - učení fyziologie účinky léků MeSH
- časové faktory MeSH
- chování zvířat MeSH
- financování organizované MeSH
- hipokampus fyziologie účinky léků zranění MeSH
- krysa rodu rattus MeSH
- poruchy paměti patofyziologie MeSH
- potkani Long-Evans MeSH
- rozpomínání fyziologie účinky léků MeSH
- tetrodotoxin toxicita MeSH
- učení vyhýbat se fyziologie účinky léků MeSH
- úniková reakce fyziologie účinky léků MeSH
- vnímání prostoru fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
In earlier experiments we have demonstrated that macaque monkeys (Macaca mulatta) are able to use abstract visual stimuli presented on a computer screen to make spatial choices in the real environment. In those experiments a touch board ("response space") was directly connected to the computer screen ("virtual space"). The goal of the present experiment was to find out whether macaque monkeys are able: (1) To make spatial choices in a response space which is completely separated from the screen where the stimuli (designed as representation of the response space) are presented. (2) To make spatial choices based on visual stimuli representing the configuration of the response space which are rotated with respect to this response space. The monkeys were trained to choose one of the nine "touch holes" on a transparent touch panel situated beside a computer monitor on which the visual stimuli were presented. The visual stimuli were designed as an abstract representation of the response space: the rewarded position was shown as a bright circle situated at a certain position in the rectangle representing the contours of the touch panel. At first, the monkeys were trained with non-rotated spatial stimuli. After this initial training, the visual stimuli were gradually rotated by 20 degrees in each step. In the last phase, the stimulus was suddenly rotated in the opposite direction by 60 degrees in one step. The results of the experiment suggest that the monkeys are able to use successfully abstract stimuli from one spatial frame for spatial choices in another frame. Effective use of the stimuli after their rotation suggested that the monkeys perceived the stimuli as a representation of the configuration of the touch holes in the real space, not only as different geometrical patterns without configuration information.
- MeSH
- diskriminační učení fyziologie MeSH
- hmat fyziologie MeSH
- Macaca mulatta MeSH
- operantní podmiňování fyziologie MeSH
- orientace fyziologie MeSH
- reakční čas fyziologie MeSH
- rotace MeSH
- rozpoznávání obrazu fyziologie MeSH
- světelná stimulace metody MeSH
- vnímání prostoru fyziologie MeSH
- vnímání tvaru fyziologie MeSH
- výběrové chování fyziologie MeSH
- zraková percepce fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
Ciba Foundation symposium ; 184
[1st ed.] VIII, 347 s. : obr., tab. ; 23 cm
- MeSH
- neurofyziologie MeSH
- oči - fyziologické jevy MeSH
- zrak fyziologie MeSH
- Publikační typ
- kongresy MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- fyziologie
- neurovědy
- oftalmologie
Task switching processes reflect a faculty of cognitive flexibility. The underlying neural mechanisms and functional cortical networks have frequently been investigated using neurophysiological (EEG) or functional imaging methods. However, task switching processes are subject to strong intra-individual variability, especially when tested under varying levels of working memory demands. This intra-individual variability compromises the reliable estimation of neurophysiological processes and related functional neuroanatomical networks. In this study, we combine residue iteration decomposition (RIDE) of event-related potentials (ERPs) and source localization methods to circumvent this problem. Due to strong intra-individual variability, behavioral effects between memory-based and cue-based task switching were not reflected by classical ERPs, but were so after applying RIDE. Using RIDE, modulations paralleling the behavioral data were specifically reflected by processes related to the updating of internal representations for response selection (reflected by the C-cluster in the P3-component time range) rather than by stimulus and motor-related processes (reflected by the S-cluster and R-cluster). The C-cluster-processes were associated with activation differences in the inferior parietal cortex, including the temporo-parietal junction (TPJ, BA40) and likely reflect mechanisms related to the updating of internal representations and task sets for response selection. The results underline the necessity to use temporal decomposition methods to control the problem of intra-individual signal variability to decipher the neurophysiology and functional neuroanatomy of cognitive processes.
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- evokované potenciály MeSH
- individualita MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- nervové dráhy fyziologie MeSH
- paměť fyziologie MeSH
- počítačové zpracování obrazu MeSH
- počítačové zpracování signálu MeSH
- podněty * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Age-related hearing loss is manifested primarily by a decreased sensitivity to faint sounds, that is, by elevation of the hearing thresholds. Nevertheless, aging also affects the ability of the auditory system to process temporal parameters of the sound stimulus. To explore the precision and reliability of auditory temporal processing during aging, responses to several types of sound stimuli were recorded from neurons of the auditory cortex (AC) of young and aged anaesthetized Fischer 344 rats. In response to broad-band noise bursts, the aged rats exhibited larger response magnitudes, a higher proportion of monotonic units, and also a larger variability of response magnitudes, suggesting a lower stability of the rate code. Of primary interest were the responses to temporally structured stimuli (amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains) recorded separately in the right and left AC. Significant differences of temporal processing were already found between the neuronal responses in the left and right AC in the young animals: for the click trains, the left hemisphere exhibited a greater responsiveness to higher repetition rates, lower vector strength values, and a lower similarity of responses. The two hemispheres were also affected differently by aging. In the right hemisphere, neurons in the aged animals displayed worse synchronization with the AM noise and clicks, but better synchronization with the FM tone. In the left hemisphere, neuronal synchronization with the stimulus modulation improved at a higher age for all three stimuli. The results show that the ability of the aging auditory system to process temporal parameters of the stimulus strongly depends on the stimulus type and on laterality. Furthermore, the commonly reported age-related decline in the temporal processing ability cannot be regarded as general as, at least at the neuronal level in the AC, objective measures of the temporal representation often exhibit age-related improvement instead of deterioration.
... -- Chapter 1 - Introduction 1 -- Electrophysiology 1 -- Action potential 1 -- Propagation of the stimulus ... ... in the muscle fibre 2 -- Depolarization and repolarization wave front 3 -- Propagation of the stimulus ... ... segment -- P-R interval, P-Q interval -- QRS interval -- Q-T interval -- Chapter 2 - Vectorial representation ... ... of the electrical heart activity 10 -- Vectorial representation of the excitation wave front 10 -- The ... ... Repolarization of the ventricles 14 -- The complete vectorcardiogram 15 -- The three-dimensional vectorial representation ...
1st publ. viii, 204 s. : il. ; 21 cm
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny.
- MeSH
- dospělí MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- Macaca mulatta MeSH
- mladý dospělý MeSH
- reakční čas MeSH
- rotace MeSH
- rozpoznávání obrazu * MeSH
- vnímání prostoru fyziologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The visual mismatch negativity (vMMN) response is an event-related potential (ERP) component, which is automatically elicited by events that violate predictions based on prior events. VMMN experiments use visual stimulus repetition to induce predictions, and vMMN is obtained by subtracting the response to rare unpredicted stimuli from those to frequent stimuli. One increasingly popular interpretation of the mismatch response postulates that vMMN, similar to its auditory counterpart (aMMN), represents a prediction error response generated by cortical mechanisms forming probabilistic representations of sensory signals. Here we discuss the physiological and theoretical basis of vMMN and review thirty-three studies from the emerging field of its clinical applications, presenting a meta-analysis of findings in schizophrenia, mood disorders, substance abuse, neurodegenerative disorders, developmental disorders, deafness, panic disorder and hypertension. Furthermore, we include reports on aging and maturation as they bear upon many clinically relevant conditions. Surveying the literature we found that vMMN is altered in several clinical populations which is in line with aMMN findings. An important potential advantage of vMMN however is that it allows the investigation of deficits in predictive processing in cognitive domains which rely primarily on visual information; a principal sensory modality and thus of vital importance in environmental information processing and response, and a modality which arguably may be more sensitive to some pathological changes. However, due to the relative infancy of research in vMMN compared to aMMN in clinical populations its potential for clinical application is not yet fully appreciated. The aim of this review and meta-analysis therefore is to present, in a detailed systematic manner, the findings from clinically-based vMMN studies, to discuss their potential impact and application, to raise awareness of this measure and to improve our understanding of disease upon fundamental aspects of visual information processing.
- MeSH
- duševní poruchy patofyziologie MeSH
- elektroencefalografie metody MeSH
- evokované potenciály fyziologie MeSH
- lidé MeSH
- mozek fyziologie patofyziologie MeSH
- nemoci nervového systému patofyziologie MeSH
- zraková percepce fyziologie MeSH
- zrakové evokované potenciály fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- přehledy MeSH