One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
- MeSH
- Arabidopsis genetics physiology MeSH
- Bacterial Proteins genetics metabolism MeSH
- Chloroplasts metabolism MeSH
- Photosynthesis * MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Cyanobacteria genetics physiology MeSH
- Synechocystis genetics physiology MeSH
- Publication type
- Journal Article MeSH
In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.
PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-). The crystallographic structure of PsbP from Spinacia oleracea lacks the N-terminal part as well as two inner regions which were modelled as loops. Those unresolved parts are believed to be functionally crucial for the binding of PsbP to the thylakoid membrane. In this NMR study we report (1)H, (15)N and (13)C resonance assignments of the backbone and side chain atoms of the PsbP protein. Based on these data, an estimate of the secondary structure has been made. The structural motifs found fit the resolved parts of the crystallographic structure very well. In addition, the complete assignment set provides preliminary insight into the dynamic regions.
- MeSH
- Photosystem II Protein Complex chemistry MeSH
- Crystallography, X-Ray MeSH
- Molecular Sequence Data MeSH
- Proton Magnetic Resonance Spectroscopy * MeSH
- Plant Proteins chemistry MeSH
- Protein Structure, Secondary MeSH
- Amino Acid Sequence MeSH
- Spinacia oleracea chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.
- MeSH
- Bacterial Proteins analysis ultrastructure MeSH
- Financing, Organized MeSH
- Phosphoproteins analysis ultrastructure MeSH
- Photosystem II Protein Complex analysis ultrastructure MeSH
- Immunohistochemistry MeSH
- Protein Structure, Quaternary MeSH
- Nitrilotriacetic Acid chemistry MeSH
- Macromolecular Substances MeSH
- Nickel chemistry MeSH
- Protein Subunits analysis MeSH
- Synechocystis chemistry MeSH
- Thylakoids chemistry MeSH
Type IV pilins are bacterial proteins that are small in size but have a broad range of functions, including motility, transformation competence and secretion. Although pilins vary in sequence, they possess a characteristic signal peptide that has to be removed by the prepilin peptidase PilD during pilin maturation. We generated a pilD (slr1120) null mutant of the cyanobacterium Synechocystis 6803 that accumulates an unprocessed form of the major pilin PilA1 (pPilA1) and its non-glycosylated derivative (NpPilA1). Notably, the pilD strain had aberrant membrane ultrastructure and did not grow photoautotrophically because the synthesis of Photosystem II subunits was abolished. However, other membrane components such as Photosystem I and ATP synthase were synthesized at levels comparable to the control strain. Proliferation of the pilD strain was rescued by elimination of the pilA1 gene, demonstrating that PilA1 prepilin inhibited the synthesis of Photosystem II. Furthermore, NpPilA1 co-immunoprecipitated with the SecY translocase and the YidC insertase, and both of these essential translocon components were degraded in the mutant. We propose that unprocessed prepilins inactivate an identical pool of translocons that function in the synthesis of both pilins and the core subunits of Photosystem II.
- MeSH
- Fimbriae, Bacterial metabolism MeSH
- Bacterial Proteins genetics metabolism MeSH
- Endopeptidases genetics metabolism MeSH
- Photosystem II Protein Complex metabolism MeSH
- Glycosylation MeSH
- Mutation MeSH
- Fimbriae Proteins metabolism MeSH
- Gene Expression Regulation, Bacterial MeSH
- Synechocystis genetics growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Photosystem II (PSII) is an intrinsic membrane protein complex that functions as a light-driven water:plastoquinone oxidoreductase in oxygenic photosynthesis. Electron transport in PSII is associated with formation of reactive oxygen species (ROS) responsible for oxidative modifications of PSII proteins. In this study, oxidative modifications of the D1 and D2 proteins by the superoxide anion (O2•-) and the hydroxyl (HO•) radicals were studied in WT and a tocopherol cyclase (vte1) mutant, which is deficient in the lipid-soluble antioxidant α-tocopherol. In the absence of this antioxidant, high-resolution tandem mass spectrometry was used to identify oxidation of D1:130E to hydroxyglutamic acid by O2•- at the PheoD1 site. Additionally, D1:246Y was modified to either tyrosine hydroperoxide or dihydroxyphenylalanine by O2•- and HO•, respectively, in the vicinity of the nonheme iron. We propose that α-tocopherol is localized near PheoD1 and the nonheme iron, with its chromanol head exposed to the lipid-water interface. This helps to prevent oxidative modification of the amino acid's hydrogen that is bonded to PheoD1 and the nonheme iron (via bicarbonate), and thus protects electron transport in PSII from ROS damage.
- MeSH
- alpha-Tocopherol chemistry metabolism MeSH
- Amino Acids chemistry metabolism MeSH
- Arabidopsis enzymology genetics radiation effects MeSH
- Photosynthesis physiology radiation effects MeSH
- Photosystem II Protein Complex chemistry genetics metabolism MeSH
- Hydroxyl Radical chemistry metabolism MeSH
- Protein Interaction Domains and Motifs MeSH
- Intramolecular Transferases chemistry genetics metabolism MeSH
- Protein Conformation, alpha-Helical MeSH
- Protein Conformation, beta-Strand MeSH
- Oxygen chemistry metabolism MeSH
- Models, Molecular MeSH
- Mutation MeSH
- Oxidation-Reduction MeSH
- Superoxides chemistry metabolism MeSH
- Light MeSH
- Thermodynamics MeSH
- Thermosynechococcus enzymology genetics radiation effects MeSH
- Thylakoids enzymology genetics radiation effects MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Iron chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.