Whey protein isolate
Dotaz
Zobrazit nápovědu
Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI.
- MeSH
- alkalická fosfatasa metabolismus MeSH
- buněčná diferenciace MeSH
- kmenové buňky cytologie metabolismus MeSH
- kolagen typu I metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze * MeSH
- osteokalcin metabolismus MeSH
- proliferace buněk MeSH
- regenerace kostí * MeSH
- skot MeSH
- syrovátkové proteiny metabolismus MeSH
- tkáňové inženýrství MeSH
- tuková tkáň cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Polyphenols are known for their antimicrobial activity, whilst both polyphenols and the globular protein β-lactoglobulin (bLG) are suggested to have antioxidant properties and promote cell proliferation. These are potentially useful properties for a tissue-engineered construct, though it is unknown if they are retained when both compounds are used in combination. In this study, a range of different microbes and an osteoblast-like cell line (human fetal osteoblast, hFOB) were used to assess the combined effect of: (1) green tea extract (GTE), rich in the polyphenol epigallocatechin gallate (EGCG), and (2) whey protein isolate (WPI), rich in bLG. It was shown that approximately 20-48% of the EGCG in GTE reacted with WPI. GTE inhibited the growth of Gram-positive bacteria, an effect which was potentiated by the addition of WPI. GTE alone also significantly inhibited the growth of hFOB cells after 1, 4, and 7 days of culture. Alternatively, WPI significantly promoted hFOB cell growth in the absence of GTE and attenuated the effect of GTE at low concentrations (64 µg/mL) after 4 and 7 days. Low concentrations of WPI (50 µg/mL) also promoted the expression of the early osteogenic marker alkaline phosphatase (ALP) by hFOB cells, whereas GTE inhibited ALP activity. Therefore, the antioxidant effects of GTE can be boosted by WPI, but GTE is not suitable to be used as part of a tissue-engineered construct due to its cytotoxic effects which negate any positive effect WPI has on cell proliferation.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- antioxidancia chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- čaj chemie MeSH
- dospělí MeSH
- fibroblasty cytologie účinky léků MeSH
- katechin analogy a deriváty chemie farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mladý dospělý MeSH
- osteoblasty cytologie účinky léků MeSH
- osteogeneze účinky léků MeSH
- polyfenoly chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- syrovátkové proteiny chemie farmakologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The present work focuses on the development of novel multicomponent organic-inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt%) was proposed. The results showed that α-TCP underwent incomplete transformation to calcium-deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30-70 wt% α-TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α-TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14-day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast-like MG-63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications.
- MeSH
- buněčné linie MeSH
- fosforečnany vápenaté * chemie farmakologie MeSH
- hydrogely * chemie farmakologie MeSH
- kosti a kostní tkáň cytologie metabolismus MeSH
- lidé MeSH
- osteoblasty cytologie metabolismus MeSH
- syrovátkové proteiny * chemie farmakologie MeSH
- tkáňové inženýrství * MeSH
- želatina * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.
- MeSH
- design vybavení MeSH
- isoelektrická fokusace přístrojové vybavení metody MeSH
- kaseiny chemie MeSH
- peptidové fragmenty analýza chemie izolace a purifikace MeSH
- peptidy analýza izolace a purifikace MeSH
- proteiny analýza izolace a purifikace MeSH
- skot MeSH
- trypsin chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Essential proteinogenic branched-chain amino acids (BCAA), particularly leucine (Leu) have been investigated for their role in enhancing human myofibrillar protein synthesis and biomedical research on tumor models. However, only a few protein sources in our current food system have high enough BCAA or Leu coefficients (% of total amino acids) to be considered as supplements for food, sport, or biomedical research. Mostly dairy-sourced proteins such as casein and whey or rarely plant source such as maize gluten are typically regarded as the gold standards. This study hypothesized that protein isolates derived from the whole-body homogenate (including the chitinous exoskeleton) of procambarid crayfish might exhibit unusually high BCAA and Leu content. The study provides open-access data on the amino acid compositions of two procambarid crayfish (Procambarus virginalis and P. clarkii), as well as a comparison with casein. The mentioned crayfish species could offer 6.36-7.39 g Leu 100 g-1 dry matter (at 43-48% protein only). Crayfish whole-body protein isolates exhibit a Leu coefficient (18.41±2.51% of total amino acids) and a BCAA coefficient (28.76±2.39% of total amino acids), which is comparable to or higher than of casein (Leu coefficient 8.65±0.08%; BCAA coefficient 20.03±0.73%). However, it is important to interpret these results with caution, due to the challenges associated with leucine and isoleucine separation, as well as potential interactions within the sample matrices. Hence, international validation of these findings is recommended. NOVELTY STATEMENT: Protein isolates from whole-body homogenate (including chitinous exoskeleton) of P. virginalis and/or P. clarkii are hypothesized to be dense in BCAA and Leu. For potential use in biomedical research or as additives in supplements for BCAA and Leu.
- MeSH
- aminokyseliny metabolismus MeSH
- kaseiny MeSH
- leucin MeSH
- lidé MeSH
- severní raci * metabolismus MeSH
- větvené aminokyseliny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Osteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlan-based scaffold was designed for osteochondral tissue engineering applications. To achieve biomimetic properties, it was enriched with a protein component - whey protein isolate as well as a ceramic ingredient - hydroxyapatite granules. The scaffold was fabricated via a simple and cost-efficient method, which represents a significant advantage. Importantly, this technique allowed generation of a scaffold with two distinct, but integrated phases. Scanning electron microcopy and optical profilometry observations demonstrated that phases of biomaterial possessed different structural properties. The top layer of the biomaterial (mimicking the cartilage) was smoother than the bottom one (mimicking the subchondral bone), which is beneficial from a biological point of view because unlike bone, cartilage is a smooth tissue. Moreover, mechanical testing showed that the top layer of the biomaterial had mechanical properties close to those of natural cartilage. Although the mechanical properties of the bottom layer of scaffold were lower than those of the subchondral bone, it was still higher than in many analogous systems. Most importantly, cell culture experiments indicated that the biomaterial possessed high cytocompatibility towards adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells in vitro. Both phases of the scaffold enhanced cell adhesion, proliferation, and chondrogenic differentiation of stem cells (revealing its chondroinductive properties in vitro) as well as osteogenic differentiation of these cells (revealing its osteoinductive properties in vitro). Given all features of the novel curdlan-based scaffold, it is worth noting that it may be considered as promising candidate for osteochondral tissue engineering applications.