artificial neural network (ANN)
Dotaz
Zobrazit nápovědu
Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.
- MeSH
- biologické markery krev MeSH
- chronická bolest krev diagnóza etiologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuralgie * krev diagnóza etiologie MeSH
- neuronové sítě * MeSH
- poranění míchy * komplikace krev MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Improper municipal solid waste (MSW) management contributes to greenhouse gas emissions, necessitating emissions reduction strategies such as waste reduction, recycling, and composting to move towards a more sustainable, low-carbon future. Machine learning models are applied for MSW-related trend prediction to provide insights on future waste generation or carbon emissions trends and assist the formulation of effective low-carbon policies. Yet, the existing machine learning models are diverse and scattered. This inconsistency poses challenges for researchers in the MSW domain who seek to identify and optimize the machine learning techniques and configurations for their applications. This systematic review focuses on MSW-related trend prediction using the most frequently applied machine learning model, artificial neural network (ANN), while addressing potential methodological improvements for reducing prediction uncertainty. Thirty-two papers published from 2013 to 2023 are included in this review, all applying ANN for MSW-related trend prediction. Observing a decrease in the size of data samples used in studies from daily to annual timescales, the summarized statistics suggest that well-performing ANN models can still be developed with approximately 33 annual data samples. This indicates promising opportunities for modeling macroscale greenhouse gas emissions in future works. Existing literature commonly used the grid search (manual) technique for hyperparameter (e.g., learning rate, number of neurons) optimization and should explore more time-efficient automated optimization techniques. Since there are no one-size-fits-all performance indicators, it is crucial to report the model's predictive performance based on more than one performance indicator and examine its uncertainty. The predictive performance of newly-developed integrated models should also be benchmarked to show performance improvement clearly and promote similar applications in future works. The review analyzed the shortcomings, best practices, and prospects of ANNs for MSW-related trend predictions, supporting the realization of practical applications of ANNs to enhance waste management practices and reduce carbon emissions.
This study reports on the successful use of a machine learning approach using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy for the classification and prediction of a donor's sex from the fingernails of 63 individuals. A significant advantage of ATR FT-IR is its ability to provide a specific spectral signature for different samples based on their biochemical composition. The infrared spectrum reveals unique vibrational features of a sample based on the different absorption frequencies of the individual functional groups. This technique is fast, simple, non-destructive, and requires only small quantities of measured material with minimal-to-no sample preparation. However, advanced multivariate techniques are needed to elucidate multiplex spectral information and the small differences caused by donor characteristics. We developed an analytical method using ATR FT-IR spectroscopy advanced with machine learning (ML) based on 63 donors' fingernails (37 males, 26 females). The PLS-DA and ANN models were established, and their generalization abilities were compared. Here, the PLS scores from the PLS-DA model were used for an artificial neural network (ANN) to create a classification model. The proposed ANN model showed a greater potential for predictions, and it was validated against an independent dataset, which resulted in 92% correctly classified spectra. The results of the study are quite impressive, with 100% accuracy achieved in correctly classifying donors as either male or female at the donor level. Here, we underscore the potential of ML algorithms to leverage the selectivity of ATR FT-IR spectroscopy and produce predictions along with information about the level of certainty in a scientifically defensible manner. This proof-of-concept study demonstrates the value of ATR FT-IR spectroscopy as a forensic tool to discriminate between male and female donors, which is significant for forensic applications.
The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.
- MeSH
- COVID-19 * epidemiologie MeSH
- kovové nanočástice * MeSH
- lidé MeSH
- neuronové sítě MeSH
- odpadní voda MeSH
- odpadní vody MeSH
- SARS-CoV-2 MeSH
- stříbro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Interpretable machine learning (ML) for early detection of cancer has the potential to improve risk assessment and early intervention. METHODS: Data from 261 proteins related to inflammation and/or tumor processes in 123 blood samples collected from healthy persons, but of whom a sub-group later developed squamous cell carcinoma of the oral tongue (SCCOT), were analyzed. Samples from people who developed SCCOT within less than 5 years were classified as tumor-to-be and all other samples as tumor-free. The optimal ML algorithm for feature selection was identified and feature importance computed by the SHapley Additive exPlanations (SHAP) method. Five popular ML algorithms (AdaBoost, Artificial neural networks [ANNs], Decision Tree [DT], eXtreme Gradient Boosting [XGBoost], and Support Vector Machine [SVM]) were applied to establish prediction models, and decisions of the optimal models were interpreted by SHAP. RESULTS: Using the 22 selected features, the SVM prediction model showed the best performance (sensitivity = 0.867, specificity = 0.859, balanced accuracy = 0.863, area under the receiver operating characteristic curve [ROC-AUC] = 0.924). SHAP analysis revealed that the 22 features rendered varying person-specific impacts on model decision and the top three contributors to prediction were Interleukin 10 (IL10), TNF Receptor Associated Factor 2 (TRAF2), and Kallikrein Related Peptidase 12 (KLK12). CONCLUSION: Using multidimensional plasma protein analysis and interpretable ML, we outline a systematic approach for early detection of SCCOT before the appearance of clinical signs.
- MeSH
- jazyk MeSH
- krevní proteiny MeSH
- lidé MeSH
- nádory jazyka * diagnóza MeSH
- spinocelulární karcinom * diagnóza MeSH
- strojové učení MeSH
- ubikvitinligasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study was conducted to evaluate public awareness about COVID with aimed to check public strategies against COVID-19. A semi structured questionnaire was collected and the data was analyzed using some statistical tools (PLS-SEM) and artificial neural networks (ANN). We started by looking at the known causal linkages between the different variables to see if they matched up with the hypotheses that had been proposed. Next, for this reason, we ran a 5,000-sample bootstrapping test to assess how strongly our findings corroborated the null hypothesis. PLS-SEM direct path analysis revealed HRP -> PA-COVID, HI -> PA-COVID, MU -> PA-COVID, PM -> PA-COVID, SD -> PA-COVID. These findings provide credence to the acceptance of hypotheses H1, H3, and H5, but reject hypothesis H2. We have also examined control factors such as respondents' age, gender, and level of education. Age was found to have a positive correlation with PA-COVID, while mean gender and education level were found to not correlate at all with PA-COVID. However, age can be a useful control variable, as a more seasoned individual is likely to have a better understanding of COVID and its effects on independent variables. Study results revealed a small moderation effect in the relationships between understudy independent and dependent variables. Education significantly moderates the relationship of PA-COVID associated with MU, PH, SD, RP, PM, PA-COVID, depicts the moderation role of education on the relationship between MU*Education->PA-COVID, HI*Education->PA.COVID, SD*Education->PA.COVID, HRP*Education->PA.COVID, PM*Education -> PA.COVID. The artificial neural network (ANN) model we've developed for spreading information about COVID-19 (PA-COVID) follows in the footsteps of previous studies. The root means the square of the errors (RMSE). Validity measures how well a model can predict a certain result. With RMSE values of 0.424 for training and 0.394 for testing, we observed that our ANN model for public awareness of COVID-19 (PA-COVID) had a strong predictive ability. Based on the sensitivity analysis results, we determined that PA. COVID had the highest relative normalized relevance for our sample (100%). These factors were then followed by MU (54.6%), HI (11.1%), SD (100.0%), HRP (28.5%), and PM (64.6%) were likewise shown to be the least important factors for consumers in developing countries struggling with diseases caused by contaminated water. In addition, a specific approach was used to construct a goodness-of-fit coefficient to evaluate the performance of the ANN models. The study will aid in the implementation of effective monitoring and public policies to promote the health of local people.
- MeSH
- COVID-19 * epidemiologie MeSH
- lidé MeSH
- neuronové sítě MeSH
- trvale udržitelný rozvoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today's computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Atherosclerosis leads to coronary artery disease (CAD) and myocardial infarction (MI), a major cause of morbidity and mortality worldwide. The computer-aided prognosis of atherosclerotic events with the electrocardiogram (ECG) derived heart rate variability (HRV) can be a robust method in the prognosis of atherosclerosis events. METHODS: A total of 70 male subjects aged 55 ± 5 years participated in the study. The lead-II ECG was recorded and sampled at 200 Hz. The tachogram was obtained from the ECG signal and used to extract twenty-five HRV features. The one-way Analysis of variance (ANOVA) test was performed to find the significant differences between the CAD, MI, and control subjects. Features were used in the training and testing of a two-class artificial neural network (ANN) and support vector machine (SVM). RESULTS: The obtained results revealed depressed HRV under atherosclerosis. Accuracy of 100% was obtained in classifying CAD and MI subjects from the controls using ANN. Accuracy was 99.6% with SVM, and in the classification of CAD from MI subjects using SVM and ANN, 99.3% and 99.0% accuracy was obtained respectively. CONCLUSIONS: Depressed HRV has been suggested to be a marker in the identification of atherosclerotic events. The good accuracy observed in classification between control, CAD, and MI subjects, revealed it to be a non-invasive cost-effective approach in the prognosis of atherosclerotic events.
Spiking Neural Network (SNN) is a promising energy-efficient neural architecture when implemented on neuromorphic hardware. The Artificial Neural Network (ANN) to SNN conversion method, which is the most effective SNN training method, has successfully converted moderately deep ANNs to SNNs with satisfactory performance. However, this method requires a large number of time-steps, which hurts the energy efficiency of SNNs. How to effectively covert a very deep ANN (e.g., more than 100 layers) to an SNN with a small number of time-steps remains a difficult task. To tackle this challenge, this paper makes the first attempt to propose a novel error analysis framework that takes both the "quantization error" and the "deviation error" into account, which comes from the discretization of SNN dynamicsthe neuron's coding scheme and the inconstant input currents at intermediate layers, respectively. Particularly, our theories reveal that the "deviation error" depends on both the spike threshold and the input variance. Based on our theoretical analysis, we further propose the Threshold Tuning and Residual Block Restructuring (TTRBR) method that can convert very deep ANNs (>100 layers) to SNNs with negligible accuracy degradation while requiring only a small number of time-steps. With very deep networks, our TTRBR method achieves state-of-the-art (SOTA) performance on the CIFAR-10, CIFAR-100, and ImageNet classification tasks.
- MeSH
- neuronové sítě * MeSH
- počítače * MeSH
- Publikační typ
- časopisecké články MeSH
This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very first attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
- MeSH
- Accipitridae * MeSH
- algoritmy MeSH
- neuronové sítě MeSH
- oxid zinečnatý * MeSH
- propylaminy MeSH
- sulfidy MeSH
- textilie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH