ultra high‐performance supercritical fluid chromatography
Dotaz
Zobrazit nápovědu
New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes.
- MeSH
- alkaloidy MeSH
- analýza moči metody MeSH
- fenethylaminy moč MeSH
- hmotnostní spektrometrie MeSH
- kalibrace MeSH
- lidé MeSH
- limita detekce MeSH
- methanol moč MeSH
- psychotropní léky analýza MeSH
- reprodukovatelnost výsledků MeSH
- rozpouštědla MeSH
- superkritická fluidní chromatografie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Novel psychoactive substances (NPS) are synthetic compounds that have been designed to produce the physiological and psychological effects of known recreational drugs, while circumventing current drug control laws and scheduling guidelines. Such "designer drugs" pose problems in detection and prevention of use, and they are no less dangerous than known controlled substances. Among the various classes of NPS, many are chiral. As they are synthetic products, most are racemates. Not unexpectedly, there is limited information about different the pharmacological and toxicological properties of their pure enantiomers. Hence, fast and reliable enantioselective methods are of great interest. In this work, superficially porous particle (SPP) vancomycin-based chiral stationary phases were used for development of fast enantioselective separation methods for various classes of NPS in supercritical fluid chromatography and liquid chromatography. The NPS tested included pyrovalerones, benzofurans, phenidines and phenidates. The effect of mobile phase composition on the retention and resolution of NPS in supercritical fluid chromatography was examined. The amount as well as the ratios of additives used is crucial for enantioseparation efficiency. Results showed the high enantioselective potential of vancomycin-based columns in both chromatographic techniques; 88% of NPS tested were enantioseparated in supercritical fluid chromatography and 69% of NPS tested were enantioseparated in liquid chromatography. Moreover, under optimized conditions, simultaneous enantioseparations of some NPS were achieved, which indicates great suitability of vancomycin-based columns for this purpose. The proposed methods can serve as guides for method development and for enantioseparation of further upcoming NPS.
The approaches to matrix effects determination and reduction in ultra-high performance supercritical fluid chromatography with mass spectrometry detection have been evaluated in this study using different sample preparation methods and investigation of different calibration models. Five sample preparation methods, including protein precipitation, liquid-liquid extraction, supported liquid extraction, and solid phase extraction based on both "bind and elute" and "interferent removal" modes, were optimized with an emphasis on the matrix effects and recovery of 8 forms of vitamin E, including α-, β-, γ-, and δ-tocopherols and tocotrienols, from plasma. The matrix effect evaluation included the use and comparison of external and internal calibration using three models, i.e., least square with no transformation and no weighting (1/x0), with 1/x2 weighting, and with logarithmic transformation. The calibration model with logarithmic transformation provided the lowest %-errors and the best fits. Moreover, the type of the calibration model significantly affected not only the fit of the data but also the matrix effects when evaluating them based on the comparison of calibration curve slopes. Indeed, based on the used calibration model, the matrix effects calculated from calibration slopes ranged from +92% to - 72% for α-tocopherol and from -77% to +19% in the case of δ-tocotrienol. Thus, it was crucial to calculate the matrix effect by Matuszewski's post-extraction approach at six concentration levels. Indeed, a strong concentration dependence was observed for all optimized sample preparation methods, even if the stable isotopically labelled internal standards (SIL-IS) were used for compensation. The significant differences between individual concentration levels and compounds were observed, even when the tested calibration range covered only one order of magnitude. In methods with wider calibration ranges, the inappropriate use of calibration slope comparison instead of the post-extraction addition approach could result in false negative results of matrix effects. In the selected example of vitamin E, solid-phase extraction was the least affected by matrix effects when used in interferent removal mode, but supported liquid extraction resulted in the highest recoveries. We showed that the calibration model, the use of a SIL-IS, and the analyte concentration level played a crucial role in the matrix effects. Moreover, the matrix effects can significantly differ for compounds with similar physicochemical properties and close retention times. Thus, in all bioanalytical applications, where different analytes are typically determined in one analytical run, it is necessary to carefully select the data processing in addition to the method for the sample preparation, SIL-IS, and chromatography.
- MeSH
- extrakce na pevné fázi metody MeSH
- hmotnostní spektrometrie * metody MeSH
- kalibrace MeSH
- lidé MeSH
- superkritická fluidní chromatografie * metody MeSH
- vitamin E * krev analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents.
- MeSH
- anabolika moč MeSH
- chromatografie plynová MeSH
- doping ve sportu prevence a kontrola MeSH
- extrakce kapalina-kapalina MeSH
- lidé MeSH
- odhalování abúzu drog metody MeSH
- steroidy moč MeSH
- superkritická fluidní chromatografie metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In the past two decades, supercritical fluid chromatography has evolved from a niche application to a comprehensive technology and a fully-fledged alternative to conventional high-performance liquid chromatography. In this study, we have focused on chiral separation of synthetic cathinones in gradient supercritical fluid chromatography coupled to mass spectrometry using an inverse gradient of a make-up solvent. Synthetic cathinones possess an amphetamine-like effect and, therefore, are frequently being offered on the Internet as a replacement for illicit drugs. Cathinones are chiral compounds, however, they are usually marketed and used as racemic mixtures. Since the effect of individual enantiomers can significantly vary, there is a need for the development of enantioseparation methods enabling to study the biological effects of individual enantiomers. Since cathinones are basic molecules, they are easily protonated (positively charged) under weakly acidic mobile phase conditions, which is a typical feature of supercritical mobile phases with an alcohol as an organic modifier. The positively charged species represent ideal analytes for ion exchangers, such as chiral zwitterion ion exchangers Chiralpak ZWIX (+) and Chiralpak ZWIX (-), which possess a positively and negatively charged unit in the molecular structure of the selectors. The presence of the positive charge in the selector's structure, functioning as a counter-ion for the positively charged analytes, significantly reduces the required amount of a buffer, which is plausible for hyphenation of such a separation system with mass spectrometry. For mass spectrometry hyphenated to supercritical fluid chromatography, the use of a make-up solvent is required to avoid analyte precipitation when using a low concentration of an organic co-solvent (modifier) in the super-/subcritical mobile phase. Hereby, we introduce a unique approach, which is based on the gradient introduction of the make-up to the post-column effluent. Using this approach, it is possible to keep constant the overall amount of the organic solvent (modifier and make-up) introduced into the mass spectrometer when using a gradient of the organic modifier. We show that the developed gradient elution method facilitates the chiral separation of all employed analytes, while the mobile-phase gradient compensation by the inverse make-up gradient enables their detection with high signal intensities.
- MeSH
- alkaloidy chemická syntéza chemie izolace a purifikace MeSH
- hmotnostní spektrometrie metody MeSH
- reologie * MeSH
- rozpouštědla chemie MeSH
- stereoizomerie MeSH
- superkritická fluidní chromatografie metody MeSH
- teplota MeSH
- tlak MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
The potential of ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) and ultrahigh-performance supercritical fluid chromatography (UHPSFC) coupled to negative-ion electrospray ionization mass spectrometry (ESI-MS) for the analysis of 46 oxylipins and 2 fatty acid standards is compared in terms of their chromatographic resolution with the emphasis on distinguishing isobaric interferences and the method sensitivity. UHPLC provides the baseline separation of 24 isobaric oxylipins within 13min, while UHPSFC enables the separation of only 20 isobaric oxylipins within 8min. Moreover, the UHPLC/ESI-MS method provides an average improvement of sensitivity by 3.5-fold. A similar trend is observed in the analysis of human plasma samples, but lower ion suppression effects caused by lysophospholipids (LPL) are observed in case of UHPSFC/ESI-MS due to better separation of LPL. Both methods are fully applicable for the analysis of oxylipins, but UHPLC/ESI-MS method is preferred due to better separation and higher sensitivity, which results in the identification of 31 oxylipins in human plasma based on available standards and additional tentative 20 identifications based on accurate m/z values and the fragmentation behavior known from the literature.
- MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- lidé MeSH
- oxylipiny krev chemie MeSH
- rozpouštědla chemie MeSH
- superkritická fluidní chromatografie metody MeSH
- teplota MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co-solvents (methanol and propan-2-ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO2 /methanol/isopropylamine 80:20:0.1 v/v/v or CO2 /propan-2-ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β-blockers. A high-performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan-2-ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high-performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high-performance liquid chromatography were also found.
- MeSH
- celulosa analogy a deriváty chemie MeSH
- diethylaminy chemie izolace a purifikace MeSH
- ethylaminy chemie izolace a purifikace MeSH
- fenylkarbamáty chemie MeSH
- kyselina trifluoroctová chemie izolace a purifikace MeSH
- propylaminy chemie izolace a purifikace MeSH
- stereoizomerie MeSH
- superkritická fluidní chromatografie * MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
Ultrahigh-performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) has a great potential for the high-throughput lipidomic quantitation of biological samples; therefore, the full optimization and method validation of UHPSFC/MS is compared here with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) in hydrophilic interaction liquid chromatography (HILIC) mode as the second powerful technique for the lipid class separation. First, the performance of six common extraction protocols is investigated, where the Folch procedure yields the best results with regard to recovery rate, matrix effect, and precision. Then, the full optimization and analytical validation for eight lipid classes using UHPSFC/MS and HILIC-UHPLC/MS methods are performed for the same sample set and applied for the lipidomic characterization of pooled samples of human plasma, human serum, and NIST SRM 1950 human plasma. The choice of appropriate internal standards (IS) for individual lipid classes has a key importance for reliable quantitative workflows illustrated by the selectivity while validation and the calculation of the quantitation error using multiple internal standards per lipid class. Validation results confirm the applicability of both methods, but UHPSFC/MS provides some distinct advantages, such as the successful separation of both non-polar and polar lipid classes unlike to HILIC-UHPLC/MS, shorter total run times (8 vs. 10.5 min), and slightly higher robustness. Various types of correlations between methods (UHPSFC/MS and HILIC-UHPLC/MS), biological material (plasma and serum), IS (laboratory and commercially mixtures), and literature data on the standard reference material show the intra- and inter-laboratory comparison in the quantitation of lipid species from eight lipid classes, the concentration differences in serum and plasma as well as the applicability of non-commercially available internal standard mixtures for lipid quantitation.
- MeSH
- hmotnostní spektrometrie metody MeSH
- krevní plazma chemie MeSH
- lidé MeSH
- lipidomika metody MeSH
- lipidy krev chemie MeSH
- sérum chemie MeSH
- superkritická fluidní chromatografie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The lipidomic research is currently devoting considerable effort to the harmonization that should enable the generation of comparable and accurate quantitative lipidomic data across different laboratories and regardless of the mass spectrometry-based platform used. In the present study, we systematically investigate the effects of the experimental setup on quantitative lipidomics data obtained by two lipid class separation approaches, hydrophilic interaction liquid chromatography (HILIC) and ultrahigh-performance supercritical fluid chromatography (UHPSFC), coupled to two different quadrupole - time of flight (QTOF) mass spectrometers from the same vendor. This approach is applied for measurements of 268 human plasma samples of healthy volunteers and renal cell carcinoma patients resulting in four data sets. We investigate and visualize differences among these data sets by multivariate data analysis methods, such as principal component analysis (PCA), orthogonal partial least square discriminant analysis (OPLS-DA), box plots, and logarithmic correlations of molar concentrations of individual lipid species. The results indicate that even measurements in the same laboratory for the same samples using different analytical platforms may yield slight variations in the molar concentrations determined. The normalization to a reference sample with defined lipid concentrations can further diminish these small differences, resulting in highly homogenous molar concentrations of individual lipid species. This strategy indicates a potential approach towards the reporting of comparable quantitative results independent from the quantitative approach and mass spectrometer used, which is important for a wider acceptance of lipidomics data in various biomarker inter-laboratory studies and ring trials.
Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis.