wing morphology
Dotaz
Zobrazit nápovědu
- MeSH
- Charadriiformes MeSH
- dospělí MeSH
- křídla zvířecí fyziologie MeSH
- peří MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- zvířata MeSH
BACKGROUND: Morphological divergence often increases with phylogenetic distance, thus making morphology taxonomically informative. However, transitions to asexual reproduction may complicate this relationship because asexual lineages capture and freeze parts of the phenotypic variation of the sexual populations from which they derive. Parasitoid wasps belonging to the genus Lysiphlebus Foerster (Hymenoptera: Braconidae: Aphidiinae) are composed of over 20 species that exploit over a hundred species of aphid hosts, including many important agricultural pests. Within Lysiphlebus, two genetically and morphologically well-defined species groups are recognised: the "fabarum" and the "testaceipes" groups. Yet within each group, sexual as well as asexual lineages occur, and in L. fabarum different morphs of unknown origin and status have been recognised. In this study, we selected a broad sample of specimens from the genus Lysiphlebus to explore the relationship between genetic divergence, reproductive mode and morphological variation in wing size and shape (quantified by geometric morphometrics). RESULTS: The analyses of mitochondrial and nuclear gene sequences revealed a clear separation between the "testaceipes" and "fabarum" groups of Lysiphlebus, as well as three well-defined phylogenetic lineages within the "fabarum" species group and two lineages within the "testaceipes" group. Divergence in wing shape was concordant with the deep split between the "testaceipes" and "fabarum" species groups, but within groups no clear association between genetic divergence and wing shape variation was observed. On the other hand, we found significant and consistent differences in the shape of the wing between sexual and asexual lineages, even when they were closely related. CONCLUSIONS: Mapping wing shape data onto an independently derived molecular phylogeny of Lysiphlebus revealed an association between genetic and morphological divergence only for the deepest phylogenetic split. In more recently diverged taxa, much of the variation in wing shape was explained by differences between sexual and asexual lineages, suggesting a mechanistic link between wing shape and reproductive mode in these parasitoid wasps.
Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids' stress response, influence one another, and together influence host fitness, remains unclear. In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant. In the winged morph, energy needed for wing maintenance may lead to trade-offs with other traits, such as reproduction or symbiont maintenance. Potential trade-offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross-generational impacts of environmental stress on reproductive output. All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host-by-symbiont interactions influenced fecundity. Stress on first-generation aphids had cross-generational impacts on second-generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings. Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.
- MeSH
- Bacteria MeSH
- hrách setý MeSH
- křídla zvířecí MeSH
- mšice * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- MeSH
- křídla zvířecí embryologie MeSH
- kuřecí embryo MeSH
- rameno embryologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
Megasecoptera is an extinct group of insects with specialized rostrum-like mouthparts, which is a synapomorphy shared with all members of the Late Paleozoic Palaeodictyopterida, and markedly slender wings that are unable to flex backwards. Here we describe the close up morphology of Protohymenidae and Scytohymenidae and uncover new aspects of the endoskeleton (tentorium) of the head, structure of the mouthparts with discernible proximal part of stylets controlled by muscles, surface of compound eyes that consist of a hexagonal pattern of large facets, structure and microstructures on the wings and reconstruct male and female external genitalia using ESEM and light stereomicroscopy. Furthermore, we describe Protohymen novokshonovi sp. n. based on an exceptionally well preserved fossil from the early Permian at Tshekarda in Russia, which shows crucial details, and the earliest species of Protohymenidae, Carbohymen testai gen. et sp. n. from a late Carboniferous siderite nodule at Mazon Creek in Illinois, USA. Our comparative study confirmed a set of structural and microstructural details on their wings, such as the composite anterior wing margin, development of an apical cell and the previously unknown external genitalia. Based on the results and comparison of homologous structures known primarily for extant relatives, such as mayflies and dragonflies, we outline for the first time the function of the mouthparts, in particular, the stylets, structure of the tentorium, vision provided by large hexagonal ommatidia and male copulatory structures bearing curved claspers for holding a female during copulation and penial lobes with seminal grooves.
- MeSH
- hmyz anatomie a histologie klasifikace ultrastruktura MeSH
- křídla zvířecí anatomie a histologie ultrastruktura MeSH
- mikroskopie elektronová rastrovací MeSH
- pohlavní orgány anatomie a histologie ultrastruktura MeSH
- ústa anatomie a histologie ultrastruktura MeSH
- zkameněliny anatomie a histologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Autoři sledují závislost mezi morfologií aproximální plošky zubu a možností vytvoření převislé výplně II. třídy. Po zhotovení aproximální kavity na laterálních zubech byl hodnocen tvar gingivální hrany preparace jako konkávní nebo nekonkávní. Drobný převis do 1 mm byl nalezen celkem u 6,36 % výplní, což je výrazně méně než udávají dostupné literární prameny (16–85 % podle metody detekce). Po statistickém vyhodnocení nebyl shledán vztah mezi morfologií aproximální plochy a vytvořením převislé výplně.
A relationship between approximal tooth surface morphology and creation of overhang filling is displayed. After drilling of approximal cavity, the gingival cavity margin was evaluated as concave or non-concave. After making the filling, on bite wing radiogram the filling quality was evaluated. The overall percentage of overhang filling in our study (up to 1mm of everhang material) was 6.36%, much less then could be found in literature (16–85% according the diagnostic method). There was not proven any statistical relationship between the risk of making overhang filling and approximal tooth morphology.
Megasecoptera is a late Paleozoic order of herbivorous insects with rostrum-like mouthparts and slender homonomous outstretched wings. Our knowledge of their morphology is mainly based on wings while other body parts are scarcely documented. Here we focus on the families Bardohymenidae and Aspidothoracidae. A new well preserved specimen of Sylvohymen cf. sibiricus is described and illustrated, particularly the structures of the external male genitalia previously unknown for Bardohymenidae. Sylvohymen marginatussp. nov. is described from the early Permian of Tshekarda based on unique traits in the wing venation. The genera Paleohymen and Taigahymen are both removed from Bardohymenidae and the latter is transferred to Vorkutiidae. Alexahymen aestatis (Brauckmann, 1991) comb. nov. from Pennsylvanian at Piesberg is transferred from Aspidothoracidae to Bardohymenidae. Piesbergbrodiagen. nov. is designated for Piesbergbrodia tristrata (Brauckmann and Herd, 2003) comb. nov. as a member of Brodiidae and the first known record of this family from Piesberg quarry. The placement of Sylvohymen peckae in the Bardohymenidae is considered doubtful due to lack of significant characters in its venation. Furthermore, our study is focused on the form of the apical cell and the pattern of wing pigmentation. Peculiarities of the integumental outgrowths and external genitalia of representatives of Aspidothoracidae and Bardohymenidae, and other close relatives, are highlighted.
- MeSH
- hmyz anatomie a histologie klasifikace MeSH
- končetiny anatomie a histologie MeSH
- křídla zvířecí anatomie a histologie MeSH
- mužské pohlavní orgány anatomie a histologie MeSH
- zkameněliny anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A mechanism involving interaction of the metathoracic wing and third abdominal segment of derbid planthoppers was first discovered over a century ago, and interpreted as a stridulatory organ for sound production. Although referred to occasionally in later taxonomic works, the detailed morphology, systematic distribution, and behavioural significance of this structure have remained unknown, and its proposed use in sound production has never been corroborated. Here we examine the distribution and morphology of the supposed stridulatory organ of Derbidae and the recently-described vibratory mechanism of planthoppers - the snapping organ, across 168 species covering the entire taxonomic spectrum of the family. We find that many derbids possess snapping organs morphologically similar to those of other planthoppers, and find no evidence for the presence of tymbal organs, which were previously thought to generate vibrational signals in derbids. We find the supposed stridulatory mechanism to be widespread in Derbidae, and conclude that it provides several systematically and taxonomically important characters. Nevertheless, its morphology appears unsuitable for the production of sound, and we instead speculate that the mechanism plays a role in spreading chemical secretions or wax. Finally, we observe wax production by tergal glands in derbid larvae, and illustrate their external morphology in adults.
- MeSH
- Hemiptera anatomie a histologie MeSH
- komunikace zvířat * MeSH
- křídla zvířecí anatomie a histologie MeSH
- vibrace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn't survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour.
- MeSH
- anatomické struktury zvířat fyziologie ultrastruktura MeSH
- hmyz klasifikace fyziologie ultrastruktura MeSH
- skenovací elektrochemická mikroskopie MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH