Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
- Klíčová slova
- COVID-19, LTRA, NSAID, asthma, biologicals,
- MeSH
- alergie * farmakoterapie MeSH
- antiflogistika nesteroidní farmakologie terapeutické užití MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- bronchiální astma * farmakoterapie MeSH
- farmakoterapie COVID-19 * MeSH
- ikosanoidy metabolismus MeSH
- konsensus MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- zánět farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- antivirové látky MeSH
- ikosanoidy MeSH
Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.
- Klíčová slova
- COVID-19, SARS-CoV-2, allergy, anaphylaxis, vaccine,
- MeSH
- alergie * diagnóza epidemiologie etiologie MeSH
- COVID-19 * MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- vakcíny * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vakcíny proti COVID-19 MeSH
- vakcíny * MeSH
- Klíčová slova
- allergic rhinitis, asthma, immunotherapy, precision medicine,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The coronavirus disease 2019 (COVID-19) has evolved into a pandemic infectious disease transmitted by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Allergists and other healthcare providers (HCPs) in the field of allergies and associated airway diseases are on the front line, taking care of patients potentially infected with SARS-CoV-2. Hence, strategies and practices to minimize risks of infection for both HCPs and treated patients have to be developed and followed by allergy clinics. METHOD: The scientific information on COVID-19 was analysed by a literature search in MEDLINE, PubMed, the National and International Guidelines from the European Academy of Allergy and Clinical Immunology (EAACI), the Cochrane Library, and the internet. RESULTS: Based on the diagnostic and treatment standards developed by EAACI, on international information regarding COVID-19, on guidelines of the World Health Organization (WHO) and other international organizations, and on previous experience, a panel of experts including clinicians, psychologists, IT experts, and basic scientists along with EAACI and the "Allergic Rhinitis and its Impact on Asthma (ARIA)" initiative have developed recommendations for the optimal management of allergy clinics during the current COVID-19 pandemic. These recommendations are grouped into nine sections on different relevant aspects for the care of patients with allergies. CONCLUSIONS: This international Position Paper provides recommendations on operational plans and procedures to maintain high standards in the daily clinical care of allergic patients while ensuring the necessary safety measures in the current COVID-19 pandemic.
- Klíčová slova
- COVID-19, Position Paper, SARS-CoV-2, allergen immunotherapy, allergy clinic, anaphylaxis, asthma, clinical trials, psychological impact,
- MeSH
- alergie diagnóza terapie MeSH
- alergologové MeSH
- COVID-19 epidemiologie prevence a kontrola MeSH
- informační technologie MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- třídění pacientů MeSH
- týmová péče o pacienty MeSH
- zdravotnický personál MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- angiotensin konvertující enzym 2 fyziologie MeSH
- bronchiální astma komplikace farmakoterapie MeSH
- COVID-19 etiologie MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- angiotensin konvertující enzym 2 MeSH
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
- Klíčová slova
- asthma, food allergy, inflammation, leukotrienes, lipid mediators, prostaglandins, rhinitis,
- MeSH
- alergie * MeSH
- bronchiální astma * etiologie MeSH
- ikosanoidy MeSH
- konsensus MeSH
- leukotrieny MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ikosanoidy MeSH
- leukotrieny MeSH
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long-lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker-driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
- Klíčová slova
- allergen immunotherapy, allergic rhinitis, asthma phenotypes and endotypes, biomarkers, food allergy,
- MeSH
- alergická rýma * diagnóza terapie MeSH
- alergie * diagnóza terapie MeSH
- atopická dermatitida * MeSH
- biologické markery MeSH
- bronchiální astma * diagnóza terapie MeSH
- lidé MeSH
- potravinová alergie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
- Klíčová slova
- COPD, COVID-19, COVID-19 children, SARS receptor, asthma, hypertension, obesity,
- MeSH
- angiotensin konvertující enzym 2 genetika imunologie MeSH
- basigin genetika imunologie MeSH
- bronchiální astma epidemiologie genetika imunologie MeSH
- chronická nemoc epidemiologie MeSH
- chronická obstrukční plicní nemoc epidemiologie genetika imunologie MeSH
- COVID-19 epidemiologie genetika imunologie MeSH
- dipeptidylpeptidasa 4 genetika imunologie MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu genetika MeSH
- hypertenze epidemiologie genetika imunologie MeSH
- kojenec MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita epidemiologie genetika imunologie MeSH
- předškolní dítě MeSH
- přirozená imunita imunologie MeSH
- rizikové faktory MeSH
- SARS-CoV-2 genetika imunologie MeSH
- senioři MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin konvertující enzym 2 MeSH
- basigin MeSH
- BSG protein, human MeSH Prohlížeč
- dipeptidylpeptidasa 4 MeSH
- DPP4 protein, human MeSH Prohlížeč
With the worldwide spread of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus disease-19 (COVID-19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS-CoV-2 infection and COVID-19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are underlined. We also summarize known and potential SARS-CoV-2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID-19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.
- Klíčová slova
- COVID-19 comorbidity, COVID-19 immunity, COVID-19 multimorbidity, COVID-19 prevention, COVID-19 treatment, SARS, SARS-CoV-2 receptors,
- MeSH
- akademie a ústavy MeSH
- Betacoronavirus imunologie MeSH
- COVID-19 MeSH
- klinické laboratorní techniky metody MeSH
- koronavirové infekce diagnóza imunologie patologie MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- testování na COVID-19 MeSH
- virová pneumonie diagnóza imunologie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.
- Klíčová slova
- COVID-19, SARS-CoV-2, allergy, coronavirus disease 2019, severe acute respiratory syndrome-related coronavirus 2,
- MeSH
- alergie komplikace imunologie terapie MeSH
- Betacoronavirus imunologie MeSH
- COVID-19 MeSH
- koronavirové infekce komplikace diagnóza terapie MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- virová pneumonie komplikace diagnóza terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH