Nejvíce citovaný článek - PubMed ID 11179890
Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
- Klíčová slova
- Biotechnology regulation, CRISPR-Cas, Crop breeding, Genome engineering, New plant breeding techniques,
- MeSH
- CRISPR-Cas systémy genetika MeSH
- editace genu * metody MeSH
- geneticky modifikované rostliny genetika MeSH
- genom rostlinný genetika MeSH
- šlechtění rostlin * metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
- Klíčová slova
- Zn-finger proteins, abiotic stresses, gene signalling ABA - abscisic acid, mechanisms, plants,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
- Klíčová slova
- DNA, G-quadruplex, RNA, Z-DNA, Z-RNA, amino acid composition, cruciform, i-motif, protein binding, triplex,
- MeSH
- DNA vazebné proteiny genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny * MeSH
- leucinové zipy genetika MeSH
- lidé MeSH
- nukleoproteiny genetika ultrastruktura MeSH
- RNA chemie ultrastruktura MeSH
- sekvence aminokyselin genetika MeSH
- transportní proteiny genetika ultrastruktura MeSH
- Z-DNA MeSH
- zinkové prsty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- nukleoproteiny MeSH
- RNA MeSH
- transportní proteiny MeSH
- Z-DNA MeSH
PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
- Klíčová slova
- ataxia, childhood apraxia of speech, developmental delay, dolichocephaly, homozygosity mapping,
- MeSH
- dítě MeSH
- dospělí MeSH
- dystonie genetika MeSH
- fenotyp MeSH
- kohortové studie MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace MeSH
- mladiství MeSH
- mutace MeSH
- neurovývojové poruchy genetika MeSH
- poruchy řeči genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- trans-aktivátory genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- vývojové poruchy u dětí genetika MeSH
- záchvaty genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- trans-aktivátory MeSH
- ZNF143 protein, human MeSH Prohlížeč
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.
- MeSH
- databáze proteinů * MeSH
- internet MeSH
- konformace proteinů MeSH
- lektiny chemie MeSH
- makromolekulární látky chemie MeSH
- molekulární konformace * MeSH
- molekulární modely MeSH
- software * MeSH
- vazebná místa MeSH
- zinkové prsty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- LecB protein, Pseudomonas aeruginosa MeSH Prohlížeč
- lektiny MeSH
- makromolekulární látky MeSH
The regulation of gene transcription allows yeast cells to respond properly to changing environmental conditions. Several protein complexes take part in this process. They involve RNA polymerase complexes, chromatin remodeling complexes, mediators, general transcription factors and specific transcriptional regulators. Using Saccharomyces cerevisiae as reference, the genomes of six species (Ashbya gossypii, Kluyveromyces lactis, K. waltii, Candida albicans, C. glabrata and Schizosaccharomyces pombe) that are human pathogens or important for the food industry were analyzed for their complement of genes encoding the homologous transcriptional regulators. The number of orthologs identified in a given species correlated with its phylogenetic distance from S. cerevisiae. Many duplicated genes encoding transcriptional regulators in S. cerevisiae and C. glabrata were reduced to one copy in species diverged before the ancestral whole genome duplication. Some transcriptional regulators appear to be specific for S. cerevisiae and probably reflect the physiological differences among species. Phylogenetic analysis and conserved gene order relationships indicate that a similar set of gene families involved in the control of multidrug resistance and oxidative stress response already existed in the common ancestor of the compared fungal species.
- MeSH
- fungální léková rezistence MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- fylogeneze MeSH
- genetická transkripce * MeSH
- genom fungální * MeSH
- kvasinky chemie klasifikace genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- regulace genové exprese u hub MeSH
- sekvence aminokyselin MeSH
- transkripční faktory chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- fungální proteiny MeSH
- transkripční faktory MeSH