Nejvíce citovaný článek - PubMed ID 11449047
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
- Klíčová slova
- 2-oxindole-3-acetic acid, HPLC-MS/MS, auxin conjugates, auxin metabolism, catabolism, indole-3-acetic acid, quantitative analysis,
- Publikační typ
- časopisecké články MeSH
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
- Klíčová slova
- UV-B, arabidopsis, carotenoid, photoreceptor, photosynthesis, xanthophyll,
- MeSH
- Arabidopsis * metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- fotosyntéza MeSH
- karotenoidy metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- karotenoidy MeSH
- proteiny huseníčku * MeSH
- Uvr8 protein, Arabidopsis MeSH Prohlížeč
- violaxanthin MeSH Prohlížeč
This study presents the hypocotyl elongation of sunflower seedlings germinated under different light conditions. Elongation was rhythmic under diurnal (LD) photoperiods but uniform (arrhythmic) under free-running conditions of white light (LL) or darkness (DD). On the sixth day after the onset of germination, seedlings were entrained in all diurnal photoperiods. Their hypocotyl elongation was dual, showing different kinetics in daytime and nighttime periods. The daytime elongation peak was around midday and 1-2 h after dusk in the nighttime. Plantlets compensated for the differences in the daytime and nighttime durations and exhibited similar overall elongation rates, centered around the uniform elongation in LL conditions. Thus, plants from diurnal photoperiods and LL could be grouped together as white-light treatments that suppressed hypocotyl elongation. Hypocotyl elongation was significantly higher under DD than under white-light photoperiods. In continuous monochromatic blue, yellow, green, or red light, hypocotyl elongation was also uniform and very high. The treatments with monochromatic light and DD had similar overall elongation rates; thus, they could be grouped together. Compared with white light, monochromatic light promoted hypocotyl elongation. Suppression of hypocotyl elongation and rhythmicity reappeared in some combination with two or more monochromatic light colors. The presence of red light was obligatory for this suppression. Plantlets entrained in diurnal photoperiods readily slipped from rhythmic into uniform elongation if they encountered any kind of free-running conditions. These transitions occurred whenever the anticipated duration of daytime or nighttime was extended more than expected, or when plantlets were exposed to constant monochromatic light. This study revealed significant differences in the development of sunflower plantlets illuminated with monochromatic or white light.
- Klíčová slova
- diurnal photoperiods, free-running photoperiods, light entrainment, monochromatic LED light, rhythmicity of hypocotyl elongation,
- Publikační typ
- časopisecké články MeSH
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
- Klíčová slova
- Arabidopsis thaliana (Arabidopsis), accession, cold, freezing tolerance, light intensity, light quality, photosynthesis, proteome,
- Publikační typ
- časopisecké články MeSH
Little data on the role played in vivo by chloroplast protein AtDeg2 as a chaperone is available. Therefore, we sought for chloroplast proteins protected from high irradiance-induced interprotein aggregation via disulphide bridges by AtDeg2 acting as a holdase. To reach this goal, we performed analyses which involved comparative diagonal electrophoreses of lysates of chloroplasts isolated from wild type (WT) plants and transgenic plants 35S:AtDEG2ΔPDZ1-GFP which expressed AtDeg2 lacking its chaperone activity but retaining the protease activity. The results of the analyses indicate that AtDeg2 acting as a holdase prevents a single chloroplast protein, i.e., the γ1 subunit of ATP synthase from long-term high irradiance-induced homodimerization mediated by disuplhide bridges and this allows us to better understand a complexity of physiological significance of AtDeg2 - the chloroplast protein of dual protease/chaperone activity.
- Klíčová slova
- Deg2, chaperone, elevated irradiance, homodimerization, protease,
- Publikační typ
- časopisecké články MeSH
Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m-2 s-1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.
- Klíčová slova
- Arabidopsis thaliana, SYNAPTOTAGMIN 1, photosynthesis, salt stress, stomata,
- MeSH
- Arabidopsis fyziologie účinky záření MeSH
- biologické pigmenty metabolismus MeSH
- chlorofyl a metabolismus MeSH
- fluorescence MeSH
- fotosyntéza fyziologie účinky záření MeSH
- plyny metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- průduchy rostlin cytologie fyziologie účinky záření MeSH
- solný stres fyziologie účinky záření MeSH
- světlo MeSH
- synaptotagmin I nedostatek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické pigmenty MeSH
- chlorofyl a MeSH
- plyny MeSH
- proteiny huseníčku MeSH
- synaptotagmin I MeSH
- SYT1 protein, Arabidopsis MeSH Prohlížeč
Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.
- Klíčová slova
- Arabidopsis thaliana, abiotic stress, auxin distribution, auxin metabolome, auxin transcriptome, root growth,
- MeSH
- Arabidopsis růst a vývoj MeSH
- chlorid sodný farmakologie MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku biosyntéza MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- solný stres účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
Modifying the cytokinin content in plants is a means of improving plant productivity. Here, we report the development and biological activity of compound TD-K (1-(furan-2-ylmethyl)-3-(1,2,3-thiadiazol-5-yl)urea)which is related to thidiazuron. TD-K-which exhibited extremely high antisenescence activity in the wheat leaf bioassay-and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine)-a plant growth regulator reported to inhibit cytokinin oxidase/dehydrogenase (CKX), an enzyme involved in the degradation of the plant hormone cytokinin-were selected for investigation of their effects on the model plant Rapid Cycling Brassica rapa (RCBr). We monitored the expression of BrCKX and isopentenyl transferase (BrIPT), which codes for the key cytokinin biosynthesis enzyme, in developing leaves following INCYDE and TD-K application. Growth room experiments revealed that INCYDE increased RCBr seed yield per plant, but only when applied multiple times and when grown in 5 mM KNO3. Expression in control leaves showed transient, high levels of expression of BrCKX and BrIPT at true leaf appearance. Following INCYDE application, there was a rapid and strong upregulation of BrCKX3, and a transient downregulation of BrIPT1 and BrIPT3. Interestingly, the upregulation of BrCKX3 persisted in a milder form throughout the course of the experiment (16 days). TD-K also upregulated BrCKX3. However, in contrast to INCYDE, this effect disappeared after two days. These results suggest that both compounds (CKX inhibitor and cytokinin TD-K) influenced cytokinin homeostasis in RCBr leaves, but with different mechanisms.
- Klíčová slova
- CKX, INCYDE, IPT, TD-K, cytokinin, cytokinin oxidase/dehydrogenase, isopentenyl transferase, thidiazuron,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. RESULTS: The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. CONCLUSION: Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.
BACKGROUND: The effective functional analysis of male gametophyte development requires new tools enabling the spatially and temporally controlled expression of both marker genes and modified genes of interest. In particular, promoters driving expression at earlier developmental stages including microspores are required. RESULTS: Transcriptomic datasets covering four progressive stages of male gametophyte development in Arabidopsis were used to select candidate genes showing early expression profiles that were male gametophyte-specific. Promoter-GUS reporter analysis of candidate genes identified three promoters (MSP1, MSP2, and MSP3) that are active in microspores and are otherwise specific to the male gametophyte and tapetum. The MSP1 and MSP2 promoters were used to successfully complement and restore the male transmission of the gametophytic two-in-one (tio) mutant that is cytokinesis-defective at first microspore division. CONCLUSION: We demonstrate the effective application of MSP promoters as tools that can be used to elucidate gametophytic gene functions in microspores in a male-specific manner.
- MeSH
- Arabidopsis genetika fyziologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny * MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH