Nejvíce citovaný článek - PubMed ID 15521192
Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment
The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.
- Klíčová slova
- A-230, Acetylcholinesterase, Antidotes, Chemical Weapons Convention, Nerve agent surrogates,
- MeSH
- acetylcholinesterasa * metabolismus MeSH
- antidota farmakologie MeSH
- chemické bojové látky * toxicita MeSH
- cholinesterasové inhibitory * toxicita MeSH
- nervová bojová látka * toxicita MeSH
- organothiofosforové sloučeniny toxicita MeSH
- oximy * farmakologie MeSH
- pralidoximové sloučeniny farmakologie MeSH
- pyridinové sloučeniny * farmakologie MeSH
- reaktivátory cholinesterasy * farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- antidota MeSH
- chemické bojové látky * MeSH
- cholinesterasové inhibitory * MeSH
- nervová bojová látka * MeSH
- organothiofosforové sloučeniny MeSH
- oximy * MeSH
- pralidoxime MeSH Prohlížeč
- pralidoximové sloučeniny MeSH
- pyridinové sloučeniny * MeSH
- reaktivátory cholinesterasy * MeSH
The therapeutic efficacy of treatments for acute intoxication with highly toxic organophosphorus compounds, called nerve agents, usually involves determination of LD50 values 24 h after nerve agent challenge without and with a single administration of the treatment. Herein, the LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated intoxication were investigated in mice for experimental end points of 6 and 24 h. The LD50 values of the nerve agents were evaluated by probit-logarithmical analysis of deaths within 6 and 24 h of i.m. challenge of the nerve agent at five different doses, using six mice per dose. The efficiency of atropine alone or atropine in combination with an oxime was practically the same at 6 and 24 h. The therapeutic efficacy of the higher dose of the antinicotinic compound MB327 was slightly higher at the 6 h end point compared to the 24 h end point for soman and tabun intoxication. A higher dose of MB327 increased the therapeutic efficacy of atropine alone for sarin, soman and tabun intoxication, and that of the standard antidotal treatment (atropine and oxime) for sarin and tabun intoxication. The therapeutic efficacy of MB327 was lower than the oxime-based antidotal treatment. To compare the 6 and 24 h end points, the influence of the experimental end point was not observed, with the exception of the higher dose of MB327. In addition, only a negligible beneficial impact of the compound MB327 was observed. Nevertheless, antinicotinics may offer an additional avenue for countering poisoning by nerve agents that are difficult to treat, and synthetic and biological studies towards the development of such novel drugs based on the core bispyridinium structure or other molecular scaffolds should continue.
- Klíčová slova
- MB327, atropine, mice, nerve agents, oximes,
- Publikační typ
- časopisecké články MeSH
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.
- Klíčová slova
- Organophosphate, acetylcholinesterase, butyrylcholinesterase, oxime, reactivator,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- chinolinové sloučeniny chemická syntéza chemie farmakologie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- pyridinové sloučeniny chemická syntéza chemie farmakologie MeSH
- rekombinantní proteiny metabolismus MeSH
- simulace molekulového dockingu MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- chinolinové sloučeniny MeSH
- cholinesterasové inhibitory MeSH
- pyridinové sloučeniny MeSH
- rekombinantní proteiny MeSH
Nerve agents pose a real threat to both the military and civil populations, but the current treatment of the poisoning is unsatisfactory. Thus, we studied the efficacy of prophylactic use of memantine alone or in combination with clinically used reversible acetylcholinesterase inhibitors (pyridostigmine, donepezil, rivastigmine) against soman. In addition, we tested their influence on post-exposure therapy consisting of atropine and asoxime. Pyridostigmine alone failed to decrease the acute toxicity of soman. But all clinically used acetylcholinesterase inhibitors administered alone reduced the acute toxicity, with donepezil showing the best efficacy. The combination of memantine with reversible acetylcholinesterase inhibitors attenuated soman acute toxicity significantly. The pretreatment administered alone or in combinations influenced the efficacy of post-exposure treatment in a similar fashion: (i) pyridostigmine or memantine alone did not affect the antidotal treatment, (ii) centrally acting reversible acetylcholinesterase inhibitors alone increased the antidotal treatment slightly, (iii) combination of memantine with reversible acetylcholinesterase inhibitors increased the antidotal treatment more markedly. In conclusion, memantine alone failed to decrease the acute toxicity of soman or increase post-exposure antidotal treatment efficacy. The combination of memantine with donepezil significantly increased post-exposure effectiveness (together 5.12, pretreatment alone 1.72). Both drugs, when applied together, mitigate soman toxicity and boost post-exposure treatment.
- Klíčová slova
- Donepezil, Memantine, Mice, Pyridostigmine, Rivastigmine, Soman,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antiparkinsonika aplikace a dávkování MeSH
- cholinesterasové inhibitory aplikace a dávkování toxicita MeSH
- donepezil aplikace a dávkování MeSH
- dopaminové látky aplikace a dávkování MeSH
- kombinovaná farmakoterapie MeSH
- memantin aplikace a dávkování MeSH
- myši MeSH
- preexpoziční profylaxe metody MeSH
- soman toxicita MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antiparkinsonika MeSH
- cholinesterasové inhibitory MeSH
- donepezil MeSH
- dopaminové látky MeSH
- memantin MeSH
- soman MeSH
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.
- Klíčová slova
- Alzheimer’s disease, acetylcholinesterase, butyrylcholinesterase, docking study, isoquinoline alkaloids, monoaminooxidase, neuroprotective activity, prolyl oligopeptidase,
- MeSH
- alkaloidy amarylkovitých metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- Amaryllidaceae chemie MeSH
- neurodegenerativní nemoci metabolismus MeSH
- prolyloligopeptidasy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alkaloidy amarylkovitých MeSH
- prolyloligopeptidasy MeSH
The potency of three nerve agents (sarin, soman, tabun) to induce oxidative damage of DNA in lymphocytes, liver and brain during lethal or sublethal poisoning was investigated. The single strand breaks or oxidative base DNA damage was evaluated with the help of Comet assay and a specific enzyme able to detect oxidative bases of DNA (endonuclease III). While sarin and soman administered at sublethal doses corresponding to 50% of their LD50 values were not able to induce oxidative damage of DNA, their lethal dose (LD50) induced the significant increase of the number of oxidative bases in DNA of hepatocytes. In addition, tabun administered at lethal dose (LD50) induced significant increase of the number of single strand breaks and oxidative bases of DNA in glial cells isolated from pontomedullar brain region. Thus, some nerve agents were able to induce oxidative damage in the peripheral as well as central compartment but only in the case of severe poisoning caused by lethal doses of nerve agents. This non-cholinergic effect of nerve agents has probably consequences with nerve agents-induced hypoxic status during acute cholinergic crisis and it can contribute to their long-term toxic effects.
- Klíčová slova
- Comet assay, DNA, Oxidative damage, Rats, Sarin, Soman, Tabun,
- Publikační typ
- časopisecké články MeSH
Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.
- MeSH
- biopsie MeSH
- chemické bojové látky škodlivé účinky chemie toxicita MeSH
- histocytochemie MeSH
- krysa rodu Rattus MeSH
- LD50 MeSH
- molekulární struktura MeSH
- orgánová specificita MeSH
- oximy aplikace a dávkování škodlivé účinky chemie toxicita MeSH
- plíce účinky léků metabolismus patologie MeSH
- vnitřnosti účinky léků patologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- žaludek účinky léků patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické bojové látky MeSH
- oximy MeSH
Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.
- Klíčová slova
- acetylcholinesterase, antidotes, drug design, neutral oximes, pesticides,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Electrophorus metabolismus MeSH
- enzymové reaktivátory chemie farmakologie MeSH
- molekulární struktura MeSH
- oximy chemie farmakologie MeSH
- paraoxon toxicita MeSH
- rybí proteiny metabolismus MeSH
- techniky in vitro MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- enzymové reaktivátory MeSH
- oximy MeSH
- paraoxon MeSH
- rybí proteiny MeSH
Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.
- MeSH
- bránice účinky léků zranění MeSH
- kosterní svaly účinky léků zranění MeSH
- krysa rodu Rattus MeSH
- myozitida chemicky indukované MeSH
- nekróza MeSH
- oximy toxicita MeSH
- potkani Wistar MeSH
- pyridinové sloučeniny toxicita MeSH
- srdce účinky léků MeSH
- svaly účinky léků patologie MeSH
- testy akutní toxicity MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Prohlížeč
- 1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane MeSH Prohlížeč
- K075 compound MeSH Prohlížeč
- oximy MeSH
- pyridinové sloučeniny MeSH
The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.
- Klíčová slova
- Ellman’s method, TOPSIS-AHP, acetylcholinesterase, molecular modeling, multicriteria decision making, neutral oxime,
- MeSH
- cholinesterasové inhibitory farmakologie MeSH
- erytrocyty účinky léků enzymologie MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- oximy chemie farmakologie MeSH
- paraoxon chemie farmakologie MeSH
- reaktivátory cholinesterasy chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholinesterasové inhibitory MeSH
- oximy MeSH
- paraoxon MeSH
- reaktivátory cholinesterasy MeSH