Nejvíce citovaný článek - PubMed ID 16328702
Solvent relaxation in phospholipid bilayers: principles and recent applications
Biomembranes, important building blocks of living organisms, are often exposed to large local fluctuations of pH and ionic strength. To capture changes in the membrane organization under such harsh conditions, we investigated the mobility and hydration of zwitterionic and anionic lipid bilayers upon elevated H3O+ and Ca2+ content by the time-dependent fluorescence shift (TDFS) technique. While the zwitterionic bilayers remain inert to lower pH and increased calcium concentrations, anionic membranes are responsive. Specifically, both bilayers enriched in phosphatidylserine (PS) and phosphatidylglycerol (PG) become dehydrated and rigidified at pH 4.0 compared to at pH 7.0. However, their reaction to the gradual Ca2+ increase in the acidic environment differs. While the PG bilayers exhibit strong rehydration and mild loosening of the carbonyl region, restoring membrane properties to those observed at pH 7.0, the PS bilayers remain dehydrated with minor bilayer stiffening. Molecular dynamics (MD) simulations support the strong binding of H3O+ to both PS and PG. Compared to PS, PG exhibits a weaker binding of Ca2+ also at a low pH.
- Klíčová slova
- Laurdan, anionic lipids, calcium, headgroup mobility, headgroup organization, lipid hydration, molecular dynamics, phospholipid bilayer, proton, time dependent fluorescence shift,
- MeSH
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * chemie MeSH
- protony * MeSH
- simulace molekulární dynamiky MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylseriny MeSH
- ionty MeSH
- lipidové dvojvrstvy * MeSH
- protony * MeSH
- vápník MeSH
The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning "hydration world." In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)-an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.
- Klíčová slova
- biomembranes, calcium, cholesterol, hydration, lipid headgroups, membrane dynamics, oxidized phosholipids, time-dependent fluorescence shift,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
- MeSH
- buněčná membrána metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- liposomy chemie metabolismus MeSH
- molekulární modely MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vápníková signalizace MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fosfolipidy MeSH
- lipidové dvojvrstvy MeSH
- liposomy MeSH
- vápník MeSH
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
- Publikační typ
- časopisecké články MeSH
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
- MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- kinetika MeSH
- lipidové dvojvrstvy chemie MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH
Fluorescence of 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan covalently attached to a cysteine residue. Formation of nonemissive complexes between a dye molecule and tryptophan accounts for about 76% of the fluorescence intensity quenching in micelles, the rest is due to diffusive encounters. In the absence of tryptophan, fluorescence of Badan-labeled cytochromes decays with triexponential kinetics characterized by lifetimes of about 100 ps, 700-800 ps, and 3 ns. Site mutation of a histidine residue in the vicinity of the Badan label by tryptophan results in shortening of all three decay lifetimes. The relative amplitude of the fastest component increases at the expense of the two slower ones. The average quenching rate constants are 4.5 × 10(8) s(-1) (CYP102) and 3.7 × 10(8) s(-1) (CYP119), at 288 K. Cyclic voltammetry of Prodan in MeCN shows a reversible reduction peak at -1.85 V vs NHE that becomes chemically irreversible and shifts positively upon addition of water. A quasireversible reduction at -0.88 V was observed in an aqueous buffer (pH 7.3). The excited-state reduction potential of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE) in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles is exergonic by ≤0.5 V and involves tryptophan oxidation by excited Badan/Prodan, coupled with a fast reaction between the reduced dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes that are often used as solvatochromic polarity probes, FRET donors and acceptors, as well as reporters of solvation dynamics.
- MeSH
- 2-naftylamin analogy a deriváty chemie MeSH
- archeální proteiny chemie MeSH
- bakteriální proteiny chemie MeSH
- fluorescence MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční spektrometrie MeSH
- kinetika MeSH
- micely MeSH
- molekulární modely MeSH
- NADPH-cytochrom c-reduktasa chemie MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- tryptofan chemie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 2-naftylamin MeSH
- 6-bromoacetyl-2-dimethylaminonaphthalene MeSH Prohlížeč
- archeální proteiny MeSH
- bakteriální proteiny MeSH
- CYP119 protein, Sulfolobus solfataricus MeSH Prohlížeč
- flavocytochrome P450 BM3 monoxygenases MeSH Prohlížeč
- fluorescenční barviva MeSH
- micely MeSH
- NADPH-cytochrom c-reduktasa MeSH
- prodan MeSH Prohlížeč
- systém (enzymů) cytochromů P-450 MeSH
- tryptofan MeSH
- voda MeSH
The need for detailed biophysical description of cationic lipid membranes, which are commonly used as gene transfection vectors, led us to study the properties of mixed cationic/zwitterionic lipid bilayers. Fluorescence solvent relaxation measurements of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) incorporated in a membrane consisting of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) were performed. The obtained results are compared with a recently measured system consisting of dioleoyltrimethylammoniumpropane (DOTAP) and dioleoylphosphatidylcholine (DOPC) (Jurkiewicz et al. Langmuir 22:8741-8749, 2006). The similar nonmonotonic dependence of the relaxation kinetics on cationic lipid content in the membrane was present for both systems. While the slowest solvent relaxation have been observed for 30 mol% of DOTAP in the DOPC bilayer (Jurkiewicz et al. Langmuir 22:8741-8749, 2006), for DMPC/DMTAP system it was found at 45 mol% of DMTAP, which agrees with the literature. Both membranes increased their hydration upon increased cationic lipid content.
- MeSH
- 2-naftylamin analogy a deriváty chemie MeSH
- dimyristoylfosfatidylcholin chemie MeSH
- fluorescence MeSH
- fluorescenční barviva chemie MeSH
- kationty chemie MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- laurany chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- lipidy chemie MeSH
- membrány chemie MeSH
- molekulární struktura MeSH
- myristáty chemie MeSH
- rozpouštědla chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-dimyristoyl-3-trimethylammonium propane MeSH Prohlížeč
- 2-naftylamin MeSH
- dimyristoylfosfatidylcholin MeSH
- fluorescenční barviva MeSH
- kationty MeSH
- kvartérní amoniové sloučeniny MeSH
- laurany MeSH
- laurdan MeSH Prohlížeč
- lipidové dvojvrstvy MeSH
- lipidy MeSH
- myristáty MeSH
- rozpouštědla MeSH
- voda MeSH