Nejvíce citovaný článek - PubMed ID 16870643
Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
- Klíčová slova
- chromosome numbers, cytogeography, ecological niche, flow cytometry, geophytes, ploidy coexistence, polyploidy,
- Publikační typ
- časopisecké články MeSH
The contents of photosynthetic pigments are an important indicator of many processes taking place in the plant body. Still, however, our knowledge of the effects of polyploidization, a major driver of speciation in vascular plants, on the contents of photosynthetic pigments is very sparse. We compared the contents of photosynthetic pigments among natural diploids, natural tetraploids, and synthetic tetraploids. The material originated from four natural mixed-cytotype populations of diploid and autotetraploid Vicia cracca (Fabaceae) occurring in the contact zone between the cytotypes in Central Europe and was cultivated under uniform conditions. We explored whether the contents of pigments are primarily driven by polyploidization or by subsequent evolution of the polyploid lineage and whether the patterns differ between populations. We also explored the relationship between pigment contents and plant performance. We found very few significant effects of the cytotype on the individual pigments but many significant interactions between the cytotype and the population. In pair-wise comparisons, many comparisons were not significant. The prevailing pattern among the significant once was that the contents of pigments were determined by polyploidization rather than by subsequent evolution of the polyploid lineage. The contents of the pigments turned out to be a useful predictor of plant performance not only at the time of material collection, but also at the end of the growing season. Further studies exploring differences in the contents of photosynthetic pigments in different cytotypes using replicated populations and assessing their relationship to plant performance are needed to assess the generality of our findings.
- Klíčová slova
- Carotenoids, Colchicine, Legume, Photoprotective pigments, Plant performance, Synthetic polyploids,
- MeSH
- biologické pigmenty genetika metabolismus MeSH
- diploidie MeSH
- fotosyntéza genetika MeSH
- polyploidie MeSH
- tetraploidie MeSH
- vikev genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biologické pigmenty MeSH
BACKGROUND AND AIMS: The origin of different cytotypes by autopolyploidy may be an important mechanism in plant diversification. Although cryptic autopolyploids probably comprise the largest fraction of overlooked plant diversity, our knowledge of their origin and evolution is still rather limited. Here we study the presumed autopolyploid aggregate of Aster amellus, which encompasses diploid and hexaploid cytotypes. Although the cytotypes of A. amellus are not morphologically distinguishable, previous studies showed spatial segregation and limited gene flow between them, which could result in different evolutionary trajectories for each cytotype. METHODS: We combine macroevolutionary, microevolutionary and niche modelling tools to disentangle the origin and the demographic history of the cytotypes, using chloroplast and nuclear markers in a dense population sampling in central Europe. KEY RESULTS: Our results revealed a segregation between diploid and hexaploid cytotypes in the nuclear genome, where each cytotype represents a monophyletic lineage probably homogenized by concerted evolution. In contrast, the chloroplast genome showed intermixed connections between the cytotypes, which may correspond to shared ancestral relationships. Phylogeny, demographic analyses and ecological niche modelling supported an ongoing differentiation of the cytotypes, where the hexaploid cytotype is experiencing a demographic expansion and niche differentiation with respect to its diploid relative. CONCLUSIONS: The two cytotypes may be considered as two different lineages at the onset of their evolutionary diversification. Polyploidization led to the occurrence of hexaploids, which expanded and changed their ecological niche.
- MeSH
- Aster genetika MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- DNA chloroplastová analýza MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA analýza MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA MeSH
BACKGROUND AND AIMS: Understanding the consequences of polyploidization is a major step towards assessing the importance of this mode of speciation. Most previous studies comparing different cytotypes, however, did so only within a single environment and considered only one group of traits. To take a step further, we need to explore multiple environments and a wide range of traits. The aim of this study was to assess response of diploid and autotetraploid individuals of Knautia arvensis (Dipsacaceae) to two stress conditions, shade or drought. METHODS: We studied eleven photosynthetic, morphological and fitness parameters of the plants over three years in a common garden under ambient conditions and two types of stress. KEY RESULTS: The results indicate strong differences in performance and physiology between cytotypes in ambient conditions. Interestingly, higher fitness in diploids contrasted with more efficient photosynthesis in tetraploids in ambient conditions. However, stress, especially drought, strongly reduced fitness and disrupted function of the photosystems in both cytotypes reducing the between cytotype differences. The results indicate that drought stress reduced function of the photosynthetic processes in both cytotypes but particularly in tetraploids, while fitness reduction was stronger in diploids. CONCLUSIONS: The photosynthesis related traits show higher plasticity in polyploids as theoretically expected, while the fitness related traits show higher plasticity in diploids especially in response to drought. This suggests that between cytotype comparisons need to consider multiple traits and multiple environments to understand the breath of possible responses of different cytotypes to stress. They also show that integrating results based on different traits is not straightforward and call for better mechanistic understanding of the relationships between species photosynthetic activity and fitness. Still, considering multiple environments and multiple species traits is crucial for understanding the drivers of niche differentiation between cytotypes in future studies.
- MeSH
- fyziologický stres * MeSH
- fyziologie rostlin * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Polyploidy in plants has been studied extensively. In many groups, two or more cytotypes represent separate biological entities with distinct distributions, histories and ecology. This study examines the distribution and origins of cytotypes of Alnus glutinosa in Europe, North Africa and western Asia. METHODS: A combined approach was used involving flow cytometry and microsatellite analysis of 12 loci in 2200 plants from 209 populations combined with species distribution modelling using MIROC and CCSM climatic models, in order to analyse (1) ploidy and genetic variation, (2) the origin of tetraploid A. glutinosa, considering A. incana as a putative parent, and (3) past distributions of the species. KEY RESULTS: The occurrence of tetraploid populations of A. glutinosa in Europe is determined for the first time. The distribution of tetraploids is far from random, forming two geographically well-delimited clusters located in the Iberian Peninsula and the Dinaric Alps. Based on microsatellite analysis, both tetraploid clusters are probably of autopolyploid origin, with no indication that A. incana was involved in their evolutionary history. A projection of the MIROC distribution model into the Last Glacial Maximum (LGM) showed that (1) populations occurring in the Iberian Peninsula and North Africa were probably interconnected during the LGM and (2) populations occurring in the Dinaric Alps did not exist throughout the last glacial periods, having retreated southwards into lowland areas of the Balkan Peninsula. CONCLUSIONS: Newly discovered tetraploid populations are situated in the putative main glacial refugia, and neither of them was likely to have been involved in the colonization of central and northern Europe after glacial withdrawal. This could mean that neither the Iberian Peninsula nor the western part of the Balkan Peninsula served as effective refugial areas for northward post-glacial expansion of A. glutinosa.
- Klíčová slova
- Alnus glutinosa, autopolyploidy, cytotype distribution, ecological niche models, flow cytometry, glacial refugia, microsatellites,
- MeSH
- alely MeSH
- analýza hlavních komponent MeSH
- diploidie MeSH
- ekosystém * MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- mikrosatelitní repetice genetika MeSH
- olše cytologie genetika MeSH
- polyploidie MeSH
- průtoková cytometrie metody MeSH
- rostlinné geny MeSH
- zeměpis * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long-term integrity of lineages in contact zones. Here, we assessed fine-scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in zones of immediate contact of di-, tetra-, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern Alps. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra- and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern Alps. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact zones indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact zone, albeit limited to a narrow strip in the immediate contact zone of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra- to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.
- Klíčová slova
- Asymmetric gene flow, Senecio carniolicus (Asteraceae), contact zone, ecological niche, hybrid cytotypes, polyploidy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Spotted knapweed (Centaurea stoebe s.l., Asteraceae) is native to Europe, where it occurs as a diploid (2xEU) and tetraploid cytotype (4xEU), but so far only the tetraploid has been reported in the introduced range in North America (4xNA). In previous studies, significant range shifts have been found towards drier climates in 4xEU compared with 2xEU, and in 4xNA when compared with the native range. In addition, 4x plants showed thicker leaves and reduced specific leaf area compared with 2x plants, suggesting higher drought tolerance in 4x plants. It is thus hypothesized that the 4x cytotype might be better pre-adapted to drought than the 2x, and the 4xNA better adapted than the 4xEU due to post-introduction selection. METHODS: Plants of the three geocytotypes (2xEU, 4xEU and 4xNA ), each represented by six populations, were subjected to three water treatments over 6 weeks in a greenhouse experiment. Plasticity and reaction norms of above- and below-ground biomasses and their ratio, survival rate, stomatal conductance and carbon isotope discrimination were analysed using linear and generalized linear mixed effect models. KEY RESULTS AND CONCLUSIONS: Above-ground and total biomasses of European tetraploids were slightly less affected by drought than those of European diploids, and 4xEU plants maintained higher levels of stomatal conductance under moderate drought than 4xNA plants, thus supporting the pre-adaptation but not the post-introduction evolution hypothesis. Plasticity indexes for most of the traits were generally higher in 2xEU and 4xNA than in 4xEU plants, but these differences were not or were only marginally significant. Interestingly, the effect of population origin and its interaction with treatment was more important than the effects of geocytotype and range. Population means for the control treatment showed several significant associations either with latitude or some aspect of climatic data, suggesting evolution of local adaptations, especially within the 2xEU and 4xEU geocytotypes.
- Klíčová slova
- Biological invasions, Centaurea stoebe, biomass partitioning, carbon isotope discrimination, drought tolerance, local adaptations, plasticity, polyploidy, spotted knapweed, water use efficiency,
- MeSH
- biomasa MeSH
- Centaurea fyziologie MeSH
- fyziologická adaptace * MeSH
- lineární modely MeSH
- období sucha * MeSH
- podnebí MeSH
- populační dynamika MeSH
- regresní analýza MeSH
- voda MeSH
- zavlečené druhy * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda MeSH
Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies may increase our understanding of the mechanisms by which plants adapt to their environment.
- MeSH
- aklimatizace fyziologie MeSH
- Aster fyziologie MeSH
- kořeny rostlin MeSH
- mykorhiza růst a vývoj MeSH
- půdní mikrobiologie MeSH
- symbióza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The potential for gene exchange across ploidy levels has long been recognized, but only a few studies have explored the rate of gene flow among different cytotypes. In addition, most of the existing knowledge comes from contact zones between diploids and tetraploids. The purpose of this paper was to investigate relationships between diploid and hexaploid individuals within the Aster amellus aggregate. A. amellus is known to occur in diploid and hexaploid cytotypes in Europe, with a complex contact zone in central Europe. Patterns of genetic diversity were investigated using seven microsatellite loci at three different spatial scales: (1) in the single known mixed-ploidy population; (2) in populations at the contact zone and (3) in a wider range of populations across Europe. The results show clear separation of the cytotypes at all three spatial scales. In addition, analysis of molecular variance strongly supported a model predicting a single origin of the hexaploids, with no or very limited gene flow between the cytotypes. Some hexaploid individuals found in the mixed-ploidy population, however, fell into the diploid cluster. This could suggest recurrent polyploid formation or occasional cross-pollination between cytotypes; however, there are strong post-zygotic breeding barriers between the two cytotypes, making the latter less plausible. Overall, the results suggest that the cytotypes could represent two cryptic species. Nevertheless, their formal separation is difficult as they cannot be distinguished morphologically, occupy very similar habitat conditions and have largely overlapping distribution ranges. These results show that polyploid complexes must be treated with caution as they can hide biological diversity and can have different adaptation potentials, evolving independently.
- MeSH
- analýza hlavních komponent MeSH
- Aster genetika MeSH
- Bayesova věta MeSH
- diploidie * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- mikrosatelitní repetice MeSH
- modely genetické MeSH
- polyploidie * MeSH
- rostlinné geny MeSH
- tok genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND AND AIMS: Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. METHODS: Ploidy and proportions of endoreplicated genome were determined using DAPI (4',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. KEY RESULTS: Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. CONCLUSIONS: Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.
- MeSH
- biologická evoluce * MeSH
- chromozomy rostlin genetika MeSH
- cytogenetika MeSH
- endoreduplikace MeSH
- genetická variace * MeSH
- genom rostlinný genetika MeSH
- hybridizace genetická MeSH
- Orchidaceae klasifikace cytologie genetika MeSH
- polyploidie * MeSH
- průtoková cytometrie MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH