Most cited article - PubMed ID 16913921
Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir
Aerobic anoxygenic phototrophic (AAP) bacteria are a common component of freshwater microbial communities. They harvest light energy using bacteriochlorophyll a-containing reaction centers to supplement their predominantly heterotrophic metabolism. We used epifluorescence microscopy, HPLC, and infrared fluorometry to examine the dynamics of AAP bacteria in the mesotrophic lake Vlkov during the seasonal cycle. The mortality of AAP bacteria was estimated from diel changes of bacteriochlorophyll a fluorescence. The AAP abundance correlated with water temperature and DOC concentration. Its maximum was registered during late summer, when AAP bacteria made up 20% of total bacteria. The novel element of this study is the seasonal measurements of AAP mortality rates. The rates ranged between 1.15 and 4.56 per day with the maxima registered in early summer coinciding with the peak of primary production, which documents that AAP bacteria are a highly active component of freshwater microbial loop.
- MeSH
- Bacteria, Aerobic classification genetics isolation & purification radiation effects MeSH
- Biodiversity * MeSH
- Phototrophic Processes MeSH
- Lakes microbiology MeSH
- Oxygen metabolism MeSH
- Seasons MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Oxygen MeSH
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
- MeSH
- Bacteria genetics growth & development MeSH
- Microbiota MeSH
- Food Chain MeSH
- Reference Standards MeSH
- Sequence Analysis, DNA standards MeSH
- Fresh Water microbiology MeSH
- High-Throughput Nucleotide Sequencing standards MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Freshwater systems are characterized by an enormous diversity of eukaryotic protists and prokaryotic taxa. The community structures in different lakes are thereby influenced by factors such as habitat size, lake chemistry, biotic interactions, and seasonality. In our study, we used high throughput 454 sequencing to study the diversity and temporal changes of prokaryotic and eukaryotic planktonic communities in three Austrian lakes during the ice-free season. In the following year, one lake was sampled again with a reduced set of sampling dates to observe reoccurring patterns. Cluster analyses (based on SSU V9 (eukaryotic) and V4 (prokaryotic) OTU composition) grouped samples according to their origin followed by separation into seasonal clusters, indicating that each lake has a unique signature based on OTU composition. These results suggest a strong habitat-specificity of microbial communities and in particular of community patterns at the OTU level. A comparison of the prokaryotic and eukaryotic datasets via co-inertia analysis (CIA) showed a consistent clustering of prokaryotic and eukaryotic samples, probably reacting to the same environmental forces (e.g., pH, conductivity). In addition, the shifts in eukaryotic and bacterioplanktonic communities generally occurred at the same time and on the same scale. Regression analyses revealed a linear relationship between an increase in Bray-Curtis dissimilarities and elapsed time. Our study shows a pronounced coupling between bacteria and eukaryotes in seasonal samplings of the three analyzed lakes. However, our temporal resolution (biweekly sampling) and data on abiotic factors were insufficient to determine if this was caused by direct biotic interactions or by reacting to the same seasonally changing environmental forces.
- Keywords
- Seasonality, diversity, eukaryotic plankton, freshwater, prokaryotic plankton, protist,
- Publication type
- Journal Article MeSH
Small bacterivorous eukaryotes play a cardinal role in aquatic food webs and their taxonomic classification is currently a hot topic in aquatic microbial ecology. Despite increasing interest in their diversity, core questions regarding predator-prey specificity remain largely unanswered, e.g., which heterotrophic nanoflagellates (HNFs) are the main bacterivores in freshwaters and which prokaryotes support the growth of small HNFs. To answer these questions, we fed natural communities of HNFs from Římov reservoir (Czech Republic) with five different bacterial strains of the ubiquitous betaproteobacterial genera Polynucleobacter and Limnohabitans. We combined amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting eukaryotic 18 S rRNA genes to track specific responses of the natural HNF community to prey amendments. While amplicon sequencing provided valuable qualitative data and a basis for designing specific probes, the number of reads was insufficient to accurately quantify certain eukaryotic groups. We also applied a double-hybridization technique that allows simultaneous phylogenetic identification of both predator and prey. Our results show that community composition of HNFs is strongly dependent upon prey type. Surprisingly, Cryptophyta were the most abundant bacterivores, although this phylum has been so far assumed to be mainly autotrophic. Moreover, the growth of a small lineage of Cryptophyta (CRY1 clade) was strongly stimulated by one Limnohabitans strain in our experiment. Thus, our study is the first report that colorless Cryptophyta are major bacterivores in summer plankton samples and can play a key role in the carbon transfer from prokaryotes to higher trophic levels.
- MeSH
- Bacteria classification genetics isolation & purification metabolism MeSH
- Cryptophyta microbiology MeSH
- Phylogeny MeSH
- Heterotrophic Processes MeSH
- In Situ Hybridization, Fluorescence MeSH
- Plankton microbiology MeSH
- Food Chain MeSH
- Seasons MeSH
- Fresh Water microbiology parasitology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The genus Limnohabitans (Comamonadaceae, Betaproteobacteria) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization.IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans, indicating that they may have a novel role in freshwater habitats.
- Keywords
- FISH, IR microscopy, Limnohabitans, bacteriochlorophyll, bchY, freshwater Betaproteobacteria, photosynthetic bacteria, pufM,
- MeSH
- Aerobiosis MeSH
- Genes, Bacterial physiology MeSH
- Bacterial Proteins genetics metabolism MeSH
- Comamonadaceae genetics metabolism MeSH
- Photosynthesis genetics MeSH
- Phylogeny MeSH
- Multigene Family physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
- Keywords
- ITS, Limnohabitans, bacterial diversity, canyon-shaped freshwater reservoir, reverse line blot hybridization, subtypes,
- MeSH
- Comamonadaceae classification genetics isolation & purification MeSH
- Cryptophyta growth & development MeSH
- Ecosystem MeSH
- Eutrophication MeSH
- Phytoplankton growth & development MeSH
- Seasons MeSH
- Cyanobacteria growth & development MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer "adaptation time" for the flagellate communities toward the large prey size offered.
- MeSH
- Comamonadaceae cytology growth & development MeSH
- Heterotrophic Processes MeSH
- Lakes microbiology parasitology MeSH
- Food Chain MeSH
- Seasons MeSH
- Fresh Water microbiology parasitology MeSH
- Zooplankton growth & development MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality.
- MeSH
- Actinobacteria physiology MeSH
- Burkholderiaceae physiology MeSH
- Time Factors MeSH
- Comamonadaceae physiology MeSH
- Eukaryota growth & development metabolism physiology MeSH
- Bacterial Physiological Phenomena MeSH
- Genes, rRNA genetics MeSH
- Heterotrophic Processes MeSH
- Food Chain MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
- MeSH
- RNA, Bacterial genetics MeSH
- Biodiversity * MeSH
- Comamonadaceae physiology MeSH
- Adaptation, Physiological physiology MeSH
- In Situ Hybridization, Fluorescence MeSH
- Hydrogen-Ion Concentration MeSH
- Water Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Bacterial MeSH
- RNA, Ribosomal, 16S MeSH
Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology.
- MeSH
- Betaproteobacteria classification genetics growth & development metabolism MeSH
- Biomass MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Molecular Sequence Data MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH