Nejvíce citovaný článek - PubMed ID 16963156
WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat
Frost tolerance (FT) is generally acquired after exposure of plants to low, but non-freezing temperatures, where it is associated with the accumulation of COR proteins. The aim of the study was to reveal the effect of different temperature treatments (25, 17, 9 and 4 °C) on accumulation of cold-regulated dehydrins, dry weight content, and the development of FT in five wheat cultivars of different frost-tolerances in detail. The levels of cold-regulated dehydrins, WCS120 proteins in wheat were determined by immunoblot analysis, probed with an anti-dehydrin antibody. The lower the growth temperature: the higher the level of frost tolerance, dry weight content, and dehydrin accumulation, in all cultivars. There was a significant correlation between the level of induced FT and the accumulation of WCS120 proteins in cultivars grown at lower temperatures (9 and 4 °C). Moreover, the highly frost-tolerant wheat cultivars (as opposed to the lower-tolerant) accumulated higher levels of WCS120 proteins at 17 °C, a temperature at which it was not possible to differentiate between them via a frost test. Here, we demonstrated the possibility to distinguish differently frost-tolerant cultivars grown at different temperatures by the accumulation of different members of WCS120 family.
- Klíčová slova
- LT50, Triticum aestivum, cold acclimation, controlled condition, dehydrins,
- Publikační typ
- časopisecké články MeSH
Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.
- Klíčová slova
- COR14b, cold acclimation, dehydrins, field trials, frost tolerance, growth chambers, vernalisation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
It is established that, besides the cold, incident light also has a crucial role in the cold acclimation process. To elucidate the interaction between these two external hardening factors, barley plantlets were grown under different light conditions with low, normal, and high light intensities at 5 and 15 °C. The expression of the HvCBF14 gene and two well-characterized members of the C-repeat binding factor (CBF)-regulon HvCOR14b and HvDHN5 were studied. In general, the expression level of the studied genes was several fold higher at 5 °C than that at 15 °C independently of the applied light intensity or the spectra. The complementary far-red (FR) illumination induced the expression of HvCBF14 and also its target gene HvCOR14b at both temperatures. However, this supplementation did not affect significantly the expression of HvDHN5. To test the physiological effects of these changes in environmental conditions, freezing tests were also performed. In all the cases, we found that the reduced R:FR ratio increased the frost tolerance of barley at every incident light intensity. These results show that the combined effects of cold, light intensity, and the modification of the R:FR light ratio can greatly influence the gene expression pattern of the plants, which can result in increased plant frost tolerance.
- Klíčová slova
- CBF regulon, HvCBF14, LED lighting, barley, far-red light, frost tolerance, low temperature,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Low temperatures represent a crucial environmental factor determining winter survival (WS) of barley and wheat winter-type varieties. In laboratory experiments, low temperatures induce an active plant acclimation response, which is associated with an enhanced accumulation of several stress-inducible proteins including dehydrins. Here, dehydrin accumulations in sampled wheat (WCS120 protein family, or WCS120 and WDHN13 transcripts) and barley (DHN5 protein) varieties grown in two locations for two winters were compared with the variety WS evaluated by a provocation wooden-box test. A high correlation between dehydrin transcripts or protein relative accumulation and variety WS score was found only in samples taken prior vernalization fulfillment, when high tolerant varieties accumulated dehydrins earlier and to higher level than less tolerant varieties, and the plants have not yet been vernalized. After vernalization fulfillment, the correlation was weak, and the apical development indicated that plants reached double ridge (DR) in barley or stayed before DR in wheat. Dehydrin proteins and transcripts can be thus used as reliable markers of wheat or barley variety winter hardiness in the field conditions; however, only at the beginning of winter, when the plants have not yet finished vernalization. In wheat, a higher correlation was obtained for the total amount of dehydrins than for the individual dehydrin proteins. HIGHLIGHTS: -More tolerant winter-type wheat and barley plants reveal higher threshold induction temperatures for dehydrin accumulation in comparison to less tolerant varieties. Thus, more tolerant winter cereals have higher dehydrin levels than the less tolerant ones upon the same ambient temperature in November samplings.-A significant correlation between dehydrin transcript/protein accumulation and winter survival was found in both winter wheat and winter barley plants in the field conditions, but only prior to vernalization fulfillment.
- Klíčová slova
- apical development, dehydrins, field trials, vernalization, winter barley, winter survival, winter wheat,
- Publikační typ
- časopisecké články MeSH
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.
- Klíčová slova
- Triticum aestivum, abscisic acid, cold treatment, cytokinin, freezing tolerance, gene expression, phytohormones,
- Publikační typ
- časopisecké články MeSH
Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.
- Klíčová slova
- Amulet, Tadmor, barley, crown, drought, leaf, microarray,
- Publikační typ
- časopisecké články MeSH
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
- Klíčová slova
- abiotic stresses, multiple stress, protein functions, protein markers, proteomics, stress tolerance, temperate crops,
- MeSH
- biologická adaptace * genetika MeSH
- biologické markery MeSH
- fyziologický stres * genetika MeSH
- genotyp MeSH
- proteom * MeSH
- proteomika * metody MeSH
- rostlinné proteiny genetika metabolismus MeSH
- zemědělské plodiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- proteom * MeSH
- rostlinné proteiny MeSH
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.
- Klíčová slova
- Hordeum vulgare, crown, drought, phenotyping candidate, proteomics,
- Publikační typ
- časopisecké články MeSH
Wheat (Triticum aestivum; T. durum) and barley (Hordeum vulgare) agricultural production is severely limited by various abiotic and biotic stress factors. Proteins are directly involved in plant stress response so it is important to study proteome changes under various stress conditions. Generally, both abiotic and biotic stress factors induce profound alterations in protein network covering signaling, energy metabolism (glycolysis, Krebs cycle, ATP biosynthesis, photosynthesis), storage proteins, protein metabolism, several other biosynthetic pathways (e.g., S-adenosylmethionine metabolism, lignin metabolism), transport proteins, proteins involved in protein folding and chaperone activities, other protective proteins (LEA, PR proteins), ROS scavenging enzymes as well as proteins affecting regulation of plant growth and development. Proteins which have been reported to reveal significant differences in their relative abundance or posttranslational modifications between wheat, barley or related species genotypes under stress conditions are listed and their potential role in underlying the differential stress response is discussed. In conclusion, potential future roles of the results of proteomic studies in practical applications such as breeding for an enhanced stress tolerance and the possibilities to test and use protein markers in the breeding are suggested.
- Klíčová slova
- abiotic stress factors, barley, biotic stress factors, protein markers, proteome, wheat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein levels as well as their possible functions in common wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare) plants exposed to various abiotic stress factors (cold, frost, drought, salinity) is provided. Possible roles of dehydrin proteins in an acquisition and maintenance of an enhanced frost tolerance are analyzed in the context of plant developmental processes (vernalization). Quantitative and qualitative differences as well as post-translational modifications in accumulated dehydrin proteins between barley cultivars revealing differential tolerance to drought and salinity are also discussed. Current knowledge on dehydrin role in wheat and barley response to major dehydrative stresses is summarized and the major challenges in dehydrin research are outlined.
- Klíčová slova
- abiotic stress, barley, dehydrin dynamics, proteins, transcripts, wheat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH