Most cited article - PubMed ID 17360474
Spatial navigation deficit in amnestic mild cognitive impairment
Impaired spatial navigation is early marker of Alzheimer's disease (AD). We examined ability of self- and informant-reported navigation questionnaires to discriminate between clinically and biomarker-defined participants, and associations of questionnaires with navigation performance, regional brain atrophy, AD biomarkers, and biomarker status. 262 participants (cognitively normal, with subjective cognitive decline, amnestic mild cognitive impairment [aMCI], and mild dementia) and their informants completed three navigation questionnaires. Navigation performance, magnetic resonance imaging volume/thickness of AD-related brain regions, and AD biomarkers were measured. Informant-reported questionnaires distinguished between cognitively normal and impaired participants, and amyloid-β positive and negative aMCI. Lower scores were associated with worse navigation performance, greater atrophy in AD-related brain regions, and amyloid-β status. Self-reported questionnaire scores did not distinguish between the groups and were weakly associated with navigation performance. Other associations were not significant. Informant-reported navigation questionnaires may be a screening tool for early AD reflecting atrophy of AD-related brain regions and AD pathology.
- Keywords
- Clinical neuroscience, Disease, Neuroscience,
- Publication type
- Journal Article MeSH
BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
- Keywords
- Basal forebrain, Progression risk, Spatial navigation, Structural covariance network, Subjective cognitive decline,
- MeSH
- Alzheimer Disease * complications MeSH
- Cognitive Dysfunction * psychology MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Disease Progression MeSH
- Spatial Navigation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Spatial navigation impairment is a promising cognitive marker of Alzheimer's disease (AD) that can reflect the underlying pathology. OBJECTIVES: We assessed spatial navigation performance in AD biomarker positive older adults with amnestic mild cognitive impairment (AD aMCI) vs. those AD biomarker negative (non-AD aMCI), and examined associations between navigation performance, MRI measures of brain atrophy, and cerebrospinal fluid (CSF) biomarkers. METHODS: A total of 122 participants with AD aMCI (n = 33), non-AD aMCI (n = 31), mild AD dementia (n = 28), and 30 cognitively normal older adults (CN) underwent cognitive assessment, brain MRI (n = 100 had high-quality images for volumetric analysis) and three virtual navigation tasks focused on route learning (body-centered navigation), wayfinding (world-centered navigation) and perspective taking/wayfinding. Cognitively impaired participants underwent CSF biomarker assessment [amyloid-β1-42, total tau, and phosphorylated tau181 (p-tau181)] and amyloid PET imaging (n = 47 and n = 45, respectively), with a subset having both (n = 19). RESULTS: In route learning, AD aMCI performed worse than non-AD aMCI (p < 0.001), who performed similarly to CN. In wayfinding, aMCI participants performed worse than CN (both p ≤ 0.009) and AD aMCI performed worse than non-AD aMCI in the second task session (p = 0.032). In perspective taking/wayfinding, aMCI participants performed worse than CN (both p ≤ 0.001). AD aMCI and non-AD aMCI did not differ in conventional cognitive tests. Route learning was associated with parietal thickness and amyloid-β1-42, wayfinding was associated with posterior medial temporal lobe (MTL) volume and p-tau181 and perspective taking/wayfinding was correlated with MRI measures of several brain regions and all CSF biomarkers. CONCLUSION: AD biomarker positive and negative older adults with aMCI had different profiles of spatial navigation deficits that were associated with posterior MTL and parietal atrophy and reflected AD pathology.
- Keywords
- allocentric navigation, egocentric navigation, entorhinal cortex, hippocampus, neurodegeneration, precuneus, retrosplenial cortex, tauopathies,
- Publication type
- Journal Article MeSH
Age-related spatial navigation decline is more pronounced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia. We used a realistic-looking virtual navigation test suite to analyze different aspects of visuospatial processing in typical and atypical aging. A total of 219 older adults were recruited from the Czech Brain Aging Study cohort. Cognitively normal older adults (CN; n = 78), patients with amnestic MCI (n = 75), and those with mild AD dementia (n = 66) underwent three navigational tasks, cognitive assessment, and brain MRI. Route learning and wayfinding/perspective-taking tasks distinguished the groups as performance and learning declined and specific visuospatial strategies were less utilized with increasing cognitive impairment. Increased perspective shift and utilization of non-specific strategies were associated with worse task performance across the groups. Primacy and recency effects were observed across the groups in the route learning and the wayfinding/perspective-taking task, respectively. In addition, a primacy effect was present in the wayfinding/perspective-taking task in the CN older adults. More effective spatial navigation was associated with better memory and executive functions. The results demonstrate that a realistic and ecologically valid spatial navigation test suite can reveal different aspects of visuospatial processing in typical and atypical aging.
- Keywords
- Alzheimer’s disease, mild cognitive impairment, navigation strategies, perspective taking, route learning, spatial navigation, visuospatial functions, wayfinding,
- Publication type
- Journal Article MeSH
Before the course of Alzheimer's disease fully manifests itself and largely impairs a patient's cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task-a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer's disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques.
- Keywords
- Alzheimer’s disease, TgF-344 AD, navigation, spatial memory,
- Publication type
- Journal Article MeSH
Impairment in spatial navigation (SN) and structural network topology is not limited to patients with Alzheimer's disease (AD) dementia and can be detected earlier in patients with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91 ± 11.33 years old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom underwent a computer-based battery of SN tests evaluating egocentric, allocentric, and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance Imaging (MRI). To evaluate the topological features of the structural connectivity network, we calculated its measures such as the global efficiency, local efficiency, clustering coefficient, and shortest path length with GRETNA. We determined the correlation between SN accuracy and network topological properties. Compared to NC, MCI subjects demonstrated a lower egocentric navigation accuracy. Compared with NC, MCI subjects showed significantly decreased clustering coefficients in the left middle frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal gyrus and decreased shortest path length in the left paracentral lobule. We observed significant positive correlations of the shortest path length in the left paracentral lobule with both the mixed allocentric-egocentric and the allocentric accuracy measured by the average total errors. A decreased clustering coefficient in the right inferior parietal gyrus was associated with a larger allocentric navigation error. White matter hyperintensities (WMH) did not affect the correlation between network properties and SN accuracy. This study demonstrated that structural connectivity network abnormalities, especially in the frontal and parietal gyri, are associated with a lower SN accuracy, independently of WMH, providing a new insight into the brain mechanisms associated with SN impairment in MCI.
- Keywords
- clustering coefficient, graph theory, mild cognitive impairment, network topology, spatial navigation,
- Publication type
- Journal Article MeSH
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p < 0.001), Ch4p (r = -0.625, p < 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
- Keywords
- allocentric, basal forebrain, entorhinal cortex, spatial navigation, subjective cognitive decline,
- Publication type
- Journal Article MeSH
BACKGROUND: Cognitive deficits are common in early multiple sclerosis (MS), however, spatial navigation changes and their associations with brain pathology remain poorly understood. OBJECTIVE: To characterize the profile of spatial navigation changes in two main navigational strategies, egocentric (self-centred) and allocentric (world-centred), and their associations with demyelinating and neurodegenerative changes in early MS. METHODS: Participants with early MS after the first clinical event (n = 51) and age-, gender- and education-matched controls (n = 42) underwent spatial navigation testing in a real-space human analogue of the Morris water maze task, comprehensive neuropsychological assessment, and MRI brain scan with voxel-based morphometry and volumetric analyses. RESULTS: The early MS group had lower performance in the egocentric (p = 0.010), allocentric (p = 0.004) and allocentric-delayed (p = 0.038) navigation tasks controlling for age, gender and education. Based on the applied criteria, lower spatial navigation performance was present in 26-29 and 33-41% of the participants with early MS in the egocentric and the allocentric task, respectively. Larger lesion load volume in cortical, subcortical and cerebellar regions (ß ≥ 0.29; p ≤ 0.032) unlike brain atrophy was associated with less accurate allocentric navigation performance. CONCLUSION: Lower spatial navigation performance is present in up to 41% of the participants with early MS. Demyelinating lesions in early MS may disrupt neural network forming the basis of allocentric navigation.
- Keywords
- Allocentric, Cognition, Egocentric, Lesion load, MRI, Neuropsychology, Volumetry, Voxel-based morphometry,
- MeSH
- Cognition MeSH
- Cognitive Dysfunction * MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Spatial Navigation * MeSH
- Multiple Sclerosis * diagnostic imaging MeSH
- Space Perception MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE: We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS: 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS: Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION: The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
- Keywords
- Alzheimer’s disease, Morris water maze, apolipoproteins E, brain-derived neurotrophic factor, entorhinal cortex, episodic memory, gene polymorphism, magnetic resonance imaging, mild cognitive impairment, spatial navigation,
- MeSH
- Apolipoprotein E4 genetics MeSH
- Cognitive Dysfunction genetics physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain-Derived Neurotrophic Factor genetics MeSH
- Polymorphism, Genetic MeSH
- Spatial Navigation physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Apolipoprotein E4 MeSH
- BDNF protein, human MeSH Browser
- Brain-Derived Neurotrophic Factor MeSH
PURPOSE: Identification of demographic, physical/physiological, lifestyle and genetic factors contributing to the onset of dementia, specifically Alzheimer disease (AD), and implementation of novel methods for early diagnosis are important to alleviate prevalence of dementia globally. The Czech Brain Aging Study (CBAS) is the first large, prospective study to address these issues in Central/Eastern Europe by enrolling non-demented adults aged 55+ years, collecting a variety of personal and biological measures and tracking cognitive function over time. PARTICIPANTS: The CBAS recruitment was initiated in 2011 from memory clinics at Brno and Prague University Hospitals, and by the end of 2018, the study included 1228 participants. Annual follow-ups include collection of socioeconomic, lifestyle and personal history information, neurology, neuropsychology, laboratory, vital sign and brain MRI data. In a subset, biomarker assessment (cerebrospinal fluid (CSF) and amyloid positron emission tomography) and spatial navigation were performed. Participants were 69.7±8.1 years old and had 14.6±3.3 years of education at baseline, and 59% were women. By the end of 2018, 31% finished three and more years of follow-up; 9% converted to dementia. Apolipoprotein E status is available from 95% of the participants. The biological sample bank linked to CBAS database contained CSF, serum and DNA. FINDINGS TO DATE: Overall, the findings, mainly from cross-sectional analyses, indicate that spatial navigation is a promising marker of early AD and that it can be distinguished from other cognitive functions. Specificity of several standard memory tests for early AD pathology was assessed with implications for clinical practice. The relationship of various lifestyle factors to cognition and brain atrophy was reported. FUTURE PLANS: Recruitment is ongoing with secured funding. Longitudinal data analyses are currently being conducted. Proposals for collaboration on specific data from the database or biospecimen, as well as collaborations with similar cohort studies to increase sample size, are welcome. Study details are available online (www.cbas.cz).
- Keywords
- dementia, epidemiology, mental health,
- MeSH
- Alzheimer Disease epidemiology MeSH
- Dementia epidemiology MeSH
- Risk Assessment MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Protective Factors MeSH
- Prospective Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH