Most cited article - PubMed ID 18923183
Diffusion in brain extracellular space
Extracellular matrix (ECM) is a network of macromolecules which has two forms-perineuronal nets (PNNs) and a diffuse ECM (dECM)-both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility. Two months after oral treatment of rats with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan (HA) synthesis, we found downregulated staining for PNNs, HA, chondroitin sulfate proteoglycans, and glial fibrillary acidic protein. These changes were enhanced after 4 and 6 months and were reversible after a normal diet. Morphometric analysis further indicated atrophy of astrocytes. Using real-time iontophoretic method dysregulation of ECM resulted in increased ECS volume fraction α in the somatosensory cortex by 35%, from α = 0.20 in control rats to α = 0.27 after the 4-MU diet. Diffusion-weighted magnetic resonance imaging revealed a decrease of mean diffusivity and fractional anisotropy (FA) in the cortex, hippocampus, thalamus, pallidum, and spinal cord. This study shows the increase in ECS volume, a loss of FA, and changes in astrocytes due to modulation of PNNs and dECM that could affect extrasynaptic transmission, cell-to-cell communication, and neural plasticity.
- Keywords
- extracellular diffusion, extracellular matrix, extracellular transmission, hyaluronan synthase, perineuronal nets, plasticity,
- MeSH
- Astrocytes drug effects MeSH
- Extracellular Matrix * drug effects metabolism pathology MeSH
- Extracellular Space * drug effects metabolism MeSH
- Glial Fibrillary Acidic Protein metabolism MeSH
- Hymecromone pharmacology MeSH
- Rats MeSH
- Hyaluronic Acid metabolism MeSH
- Brain * drug effects metabolism MeSH
- Nerve Net * drug effects pathology MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glial Fibrillary Acidic Protein MeSH
- Hymecromone MeSH
- Hyaluronic Acid MeSH
Astrocytes are crucial for the functioning of the nervous system as they maintain the ion homeostasis via volume regulation. Pathological states, such as amyotrophic lateral sclerosis (ALS), affect astrocytes and might even cause a loss of such functions. In this study, we examined astrocytic swelling/volume recovery in both the brain and spinal cord of the SOD1 animal model to determine the level of their impairment caused by the ALS-like pathology. Astrocyte volume changes were measured in acute brain or spinal cord slices during and after exposure to hyperkalemia. We then compared the results with alterations of extracellular space (ECS) diffusion parameters, morphological changes, expression of the Kir4.1 channel and the potassium concentration measured in the cerebrospinal fluid, to further disclose the link between potassium and astrocytes in the ALS-like pathology. Morphological analysis revealed astrogliosis in both the motor cortex and the ventral horns of the SOD1 spinal cord. The activated morphology of SOD1 spinal astrocytes was associated with the results from volume measurements, which showed decreased swelling of these cells during hyperkalemia. Furthermore, we observed lower shrinkage of ECS in the SOD1 spinal ventral horns. Immunohistochemical analysis then confirmed decreased expression of the Kir4.1 channel in the SOD1 spinal cord, which corresponded with the diminished volume regulation. Despite astrogliosis, cortical astrocytes in SOD1 mice did not show alterations in swelling nor changes in Kir4.1 expression, and we did not identify significant changes in ECS parameters. Moreover, the potassium level in the cerebrospinal fluid did not deviate from the physiological concentration. The results we obtained thus suggest that ALS-like pathology causes impaired potassium uptake associated with Kir4.1 downregulation in the spinal astrocytes, but based on our data from the cortex, the functional impairment seems to be independent of the morphological state.
- Keywords
- SOD1, amyotrophic lateral sclerosis, astrocytes, extracellular space, potassium uptake, volume regulation,
- Publication type
- Journal Article MeSH
Disruption of the blood-brain barrier (BBB) is a key feature of various brain disorders. To assess its integrity a parametrization of dynamic magnetic resonance imaging (DCE MRI) with a contrast agent (CA) is broadly used. Parametrization can be done quantitatively or semi-quantitatively. Quantitative methods directly describe BBB permeability but exhibit several drawbacks such as high computation demands, reproducibility issues, or low robustness. Semi-quantitative methods are fast to compute, simply mathematically described, and robust, however, they do not describe the status of BBB directly but only as a variation of CA concentration in measured tissue. Our goal was to elucidate differences between five semi-quantitative parameters: maximal intensity (Imax), normalized permeability index (NPI), and difference in DCE values between three timepoints: baseline, 5 min, and 15 min (delta5-0, delta15-0, delta15-5) and two quantitative parameters: transfer constant (Ktrans) and an extravascular fraction (Ve). For the purpose of comparison, we analyzed DCE data of four patients 12-15 days after the stroke with visible CA enhancement. Calculated parameters showed abnormalities spatially corresponding with the ischemic lesion, however, findings in individual parameters morphometrically differed. Ktrans and Ve were highly correlated. Delta5-0 and delta15-0 were prominent in regions with rapid CA enhancement and highly correlated with Ktrans. Abnormalities in delta15-5 and NPI were more homogenous with less variable values, smoother borders, and less detail than Ktrans. Moreover, only delta15-5 and NPI were able to distinguish vessels from extravascular space. Our comparison provides important knowledge for understanding and interpreting parameters derived from DCE MRI by both quantitative and semi-quantitative methods.
- MeSH
- Blood-Brain Barrier * diagnostic imaging MeSH
- Contrast Media MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain Diseases * MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Contrast Media MeSH
INTRODUCTION: Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. METHODS AND RESULTS: In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. CONCLUSION: Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
- Keywords
- AQP4, ECS diffusion, MRI, TRPV4, brain edema, cerebral ischemia,
- Publication type
- Journal Article MeSH
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood-brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
- Keywords
- blood-brain barrier, drug delivery, nanomedicine and nanocarrier, nanotechnology, neurodegenerative diseases,
- Publication type
- Journal Article MeSH
- Review MeSH
The adult human brain represents only 2% of the body's total weight, however it is one of the most metabolically active organs in the mammalian body. Its high metabolic activity necessitates an efficacious waste clearance system. Besides the blood, there are two fluids closely linked to the brain and spinal cord drainage system: interstitial fluid (ISF) and cerebrospinal fluid (CSF). The aim of this review is to summarize the latest research clarifying the channels of metabolite removal by fluids from brain tissue, subarachnoid space (SAS) and brain dura (BD). Special attention is focused on lymphatic vascular structures in the brain dura, their localizations within the meninges, morphological properties and topographic anatomy. The review ends with an account of the consequences of brain lymphatic drainage failure. Knowledge of the physiological state of the clearance system is crucial in order to understand the changes related to impaired brain drainage.
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
- Keywords
- Alzheimer’s disease, ECS diffusion, astrocyte heterogeneity, astrocytes, ion uptake, volume changes,
- Publication type
- Journal Article MeSH
Already moderate alcohol consumption has detrimental long-term effects on brain function. However, how alcohol produces its potent addictive effects despite being a weak reinforcer is a poorly understood conundrum that likely hampers the development of successful interventions to limit heavy drinking. In this translational study, we demonstrate widespread increased mean diffusivity in the brain gray matter of chronically drinking humans and rats. These alterations appear soon after drinking initiation in rats, persist into early abstinence in both species, and are associated with a robust decrease in extracellular space tortuosity explained by a microglial reaction. Mathematical modeling of the diffusivity changes unveils an increased spatial reach of extrasynaptically released transmitters like dopamine that may contribute to alcohol's progressively enhanced addictive potency.
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
- Keywords
- Aging, Diffusion, Extracellular matrix, Extracellular space, Hapln4,
- MeSH
- Trapezoid Body metabolism pathology MeSH
- Diffusion * MeSH
- Extracellular Matrix Proteins deficiency MeSH
- Extracellular Matrix metabolism pathology MeSH
- Extracellular Space metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Protein Deficiency metabolism pathology MeSH
- Organ Culture Techniques MeSH
- Peripheral Nerves metabolism pathology MeSH
- Nerve Tissue Proteins deficiency MeSH
- Auditory Pathways metabolism pathology MeSH
- Aging metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Extracellular Matrix Proteins MeSH
- Hapln4 protein, mouse MeSH Browser
- Nerve Tissue Proteins MeSH
To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm2. Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm2 (fractional anisotropy (FA), Axial-, Mean- and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.
- MeSH
- Nerve Degeneration diagnosis diagnostic imaging pathology MeSH
- Diagnostic Imaging * MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain Stem diagnostic imaging pathology MeSH
- Parkinson Disease diagnosis diagnostic imaging pathology MeSH
- Gray Matter diagnostic imaging pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Substantia Nigra diagnostic imaging pathology MeSH
- Thalamus diagnostic imaging pathology MeSH
- Diffusion Tensor Imaging * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH