Most cited article - PubMed ID 20300209
Auxin transporters--why so many?
N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
- Keywords
- N-Sulfoindole-3-acetic acid, Indole-3-acetic acid, Mass spectrometry, Metabolomics, Phytohormone, Sulfonated,
- MeSH
- Arabidopsis metabolism MeSH
- Indoleacetic Acids * metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Urtica dioica metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids * MeSH
- Plant Growth Regulators MeSH
The establishment of an efficient protocol for in vitro growth and regeneration of kohlrabi (Brassica oleracea var. gongylodes) allowed us to closely examine the phytohormone profiles of kohlrabi seedlings at four growth stages (T1-T4), additionally including the effects of cytokinins (CKs)-trans-zeatin (transZ) and thidiazuron (TDZ)-and high sucrose concentrations (6% and 9%). Resulting phytohormone profiles showed complex time-course patterns. At the T2 stage of control kohlrabi plantlets (with two emerged true leaves), levels of endogenous CK free bases and gibberellin GA20 increased, while increases in jasmonic acid (JA), JA-isoleucine (JA-Ile), indole-3-acetic acid (IAA) and indole-3-acetamide (IAM) peaked later, at T3. At the same time, the content of most of the analyzed IAA metabolites decreased. Supplementing growth media with CK induced de novo formation of shoots, while both CK and sucrose treatments caused important changes in most of the phytohormone groups at each developmental stage, compared to control. Principal component analysis (PCA) showed that sucrose treatment, especially at 9%, had a stronger effect on the content of endogenous hormones than CK treatments. Correlation analysis showed that the dynamic balance between the levels of certain bioactive phytohormone forms and some of their metabolites could be lost or reversed at particular growth stages and under certain CK or sucrose treatments, with correlation values changing between strongly positive and strongly negative. Our results indicate that the kohlrabi phytohormonome is a highly dynamic system that changes greatly along the developmental time scale and also during de novo shoot formation, depending on exogenous factors such as the presence of growth regulators and different sucrose concentrations in the growth media, and that it interacts intensively with these factors to facilitate certain responses.
- Keywords
- cytokinin, in vitro development, kohlrabi, phytohormone profiling, shoot regeneration, sucrose,
- Publication type
- Journal Article MeSH
Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
- Keywords
- ARD, Malus × domestica Borkh. (apple), allelopathy, auxin, dihydrochalcones, phloretin, phytotoxicity, polar auxin transport,
- Publication type
- Journal Article MeSH
De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.
- Keywords
- DNSO, auxin, cytokinin, de novo shoot organogenesis, gene regulatory network, hormone uptake, shoot regeneration, sucrose, transport,
- MeSH
- Cytokinins metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Organogenesis, Plant * MeSH
- Plant Growth Regulators metabolism MeSH
- Plant Shoots cytology metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cytokinins MeSH
- Indoleacetic Acids MeSH
- Plant Growth Regulators MeSH
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
- Keywords
- ABCG14, AZG1, AZG2, PUP14, cytokinin distribution, cytokinin hydrophobicity, cytokinin transport, membrane transport,
- MeSH
- Arabidopsis metabolism MeSH
- Biological Transport MeSH
- Cell Membrane metabolism MeSH
- Cytokinins metabolism MeSH
- Homeostasis MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Kinetics MeSH
- Plant Roots metabolism MeSH
- Membrane Transport Proteins metabolism MeSH
- Arabidopsis Proteins genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Growth Regulators metabolism MeSH
- Signal Transduction physiology MeSH
- Thermodynamics MeSH
- Plant Shoots metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cytokinins MeSH
- Membrane Transport Proteins MeSH
- Arabidopsis Proteins MeSH
- Plant Growth Regulators MeSH
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
- Keywords
- PIN-FORMED 2, ROP2, ROS, TOR signaling, auxin, plant adaptation, polar cell elongation, root growth, root hair growth,
- Publication type
- Journal Article MeSH
- Review MeSH
Root-hair growth and development regulated by soil microbes is associated with auxin. In this background, we hypothesized that mycorrhizal fungal inoculation induces greater root-hair growth through stimulated auxin synthesis and transport under water stress conditions. Trifoliate orange (Poncirus trifoliata) was inoculated with an arbuscular mycorrhizal (AM) fungus (Funneliformis mosseae) under well-watered (WW) and drought stress (DS) for 9 weeks. Compared with non-AM seedlings, AM seedlings displayed significantly higher density, length, and diameter of root hairs and root indoleacetic acid (IAA) level, whereas lower total root IAA efflux, regardless of soil moisture status. Root PtYUC3 and PtYUC8 involved in IAA biosynthesis were up-regulated by mycorrhization under WW and DS, whereas AM-modulated expression in PtTAA1, PtTAR2, PtYUC4, and PtYUC6 depended on status of soil moisture. Mycorrhizal inoculation down-regulated the transcript level of root auxin efflux carriers like PtPIN1 and PtPIN3, whereas significantly up-regulated the expression of root auxin-species influx carriers like PtABCB19 and PtLAX2 under DS. These results indicated that AMF-stimulated greater root-hair growth of trifoliate orange under DS that is independent on AMF species is related with mycorrhiza-modulated auxin synthesis and transport, which benefits the host plant to enhance drought tolerance.
- MeSH
- Biological Transport MeSH
- Stress, Physiological * MeSH
- Glomeromycota growth & development physiology MeSH
- Indoleacetic Acids metabolism MeSH
- RNA, Messenger genetics metabolism MeSH
- Mycorrhizae growth & development physiology MeSH
- Droughts * MeSH
- Colony Count, Microbial MeSH
- Poncirus genetics growth & development microbiology physiology MeSH
- Gene Expression Regulation, Plant MeSH
- Genes, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids MeSH
- RNA, Messenger MeSH
- Plant Proteins MeSH
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
- Keywords
- auxin, auxin distribution, auxin signalling, auxin transport, direct visualization, indirect visualization, receptor, sensor,
- MeSH
- Arabidopsis metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Development physiology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Indoleacetic Acids MeSH
Coordination of plant development requires modulation of growth responses that are under control of the phytohormone auxin. PIN-FORMED plasma membrane proteins, involved in intercellular transport of the growth regulator, are key to the transmission of such auxin signals and subject to multilevel surveillance mechanisms, including reversible post-translational modifications. Apart from well-studied PIN protein modifications, namely phosphorylation and ubiquitylation, no further post-translational modifications have been described so far. Here, we focused on root-specific Arabidopsis PIN2 and explored functional implications of two evolutionary conserved cysteines, by a combination of in silico and molecular approaches. PIN2 sequence alignments and modeling predictions indicated that both cysteines are facing the cytoplasm and therefore would be accessible to redox status-controlled modifications. Notably, mutant pin2C-A alleles retained functionality, demonstrated by their ability to almost completely rescue defects of a pin2 null allele, whereas high resolution analysis of pin2C-A localization revealed increased intracellular accumulation, and altered protein distribution within plasma membrane micro-domains. The observed effects of cysteine replacements on root growth and PIN2 localization are consistent with a model in which redox status-dependent cysteine modifications participate in the regulation of PIN2 mobility, thereby fine-tuning polar auxin transport.
- Keywords
- Arabidopsis, Auxin, PIN proteins, SRRF, intracellular distribution, plasma membrane protein sorting, protein mobility, protein modeling, root phenotype,
- MeSH
- Arabidopsis genetics metabolism MeSH
- Cysteine genetics MeSH
- Conserved Sequence * MeSH
- Plant Roots growth & development metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Membrane Microdomains metabolism MeSH
- Arabidopsis Proteins chemistry genetics metabolism MeSH
- Protein Transport MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cysteine MeSH
- Indoleacetic Acids MeSH
- PIN2 protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins MeSH
The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium.
- MeSH
- Arabidopsis drug effects genetics metabolism MeSH
- Flavonoids pharmacology MeSH
- Glucosyltransferases genetics metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Mutation MeSH
- Protein Phosphatase 2 genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3-hydroxyflavone MeSH Browser
- Flavonoids MeSH
- Glucosyltransferases MeSH
- Indoleacetic Acids MeSH
- PIN2 protein, Arabidopsis MeSH Browser
- Protein Phosphatase 2 MeSH
- Arabidopsis Proteins MeSH
- RCN1 protein, Arabidopsis MeSH Browser
- RHM1 protein, Arabidopsis MeSH Browser