Nejvíce citovaný článek - PubMed ID 21666791
Genetic control of resistance to Trypanosoma brucei brucei infection in mice
BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
- Klíčová slova
- Genetics, Macrophages, Mouse model, Neuroinflammation, Tick-borne encephalitis, Tick-borne encephalitis virus, Transcriptomics,
- MeSH
- cytokiny * metabolismus genetika MeSH
- genotyp MeSH
- klíšťová encefalitida * imunologie virologie genetika MeSH
- makrofágy * imunologie virologie MeSH
- mozek * virologie imunologie MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- viry klíšťové encefalitidy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny * MeSH
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
- Klíčová slova
- Leishmania major, advanced intercross line, bioinformatics analysis, fine mapping, functional heterogeneity, quantitative trait locus, recombinant mapping, susceptibility to infection,
- MeSH
- cytokiny MeSH
- imunoglobulin E MeSH
- interferon gama genetika MeSH
- kožní nemoci * MeSH
- Leishmania major * genetika MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- imunoglobulin E MeSH
- interferon gama MeSH
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host's sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host's hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
- Klíčová slova
- bacteria, mouse model, parasites, sex influence, sex-bias, sex-dependent gene, susceptibility to infection, viruses,
- MeSH
- bakteriální infekce epidemiologie genetika MeSH
- biologické modely MeSH
- dítě MeSH
- dospělí MeSH
- druhová specificita MeSH
- genetická predispozice k nemoci * MeSH
- helmintóza epidemiologie genetika MeSH
- infekční nemoci epidemiologie genetika MeSH
- interakce hostitele a patogenu genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mykózy epidemiologie genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- parazitární nemoci epidemiologie genetika MeSH
- pohlavní dimorfismus * MeSH
- pohlavní steroidní hormony fyziologie MeSH
- rozložení podle pohlaví MeSH
- virové nemoci epidemiologie genetika MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- pohlavní steroidní hormony MeSH
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes' functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
- Klíčová slova
- CD11b+Gr1+ subpopulation, candidate gene, genetic control, myeloid-derived cells, neutrophils, relative spleen weight, spleen architecture,
- MeSH
- chromozomy genetika MeSH
- genetická vazba genetika MeSH
- genetické lokusy genetika MeSH
- lidé MeSH
- myeloidní buňky fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutrofily fyziologie MeSH
- polymorfismus genetický genetika MeSH
- slezina fyziologie MeSH
- stabilita RNA genetika MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmaniasis is a serious health problem in many countries, and continues expanding to new geographic areas including Europe and USA. This disease, caused by parasites of Leishmania spp. and transmitted by phlebotomine sand flies, causes up to 1.3 million new cases each year and despite efforts toward its functional dissection and treatment it causes 20-50 thousands deaths annually. Dependence of susceptibility to leishmaniasis on sex and host's genes was observed in humans and in mouse models. Several laboratories defined in mice a number of Lmr (Leishmania major response) genetic loci that control functional and pathological components of the response to and outcome of L. major infection. However, the development of its most aggressive form, visceral leishmaniasis, which is lethal if untreated, is not yet understood. Visceral leishmaniasis is caused by infection and inflammation of internal organs. Therefore, we analyzed the genetics of parasite load, spread to internal organs, and ensuing visceral pathology. Using a new PCR-based method of quantification of parasites in tissues we describe a network-like set of interacting genetic loci that control parasite load in different organs. Quantification of Leishmania parasites in lymph nodes, spleen and liver from infected F2 hybrids between BALB/c and recombinant congenic strains CcS-9 and CcS-16 allowed us to map two novel parasite load controlling Leishmania major response loci, Lmr24 and Lmr27. We also detected parasite-controlling role of the previously described loci Lmr4, Lmr11, Lmr13, Lmr14, Lmr15, and Lmr25, and describe 8 genetic interactions between them. Lmr14, Lmr15, Lmr25, and Lmr27 controlled parasite load in liver and lymph nodes. In addition, Leishmania burden in lymph nodes but not liver was influenced by Lmr4 and Lmr24. In spleen, parasite load was controlled by Lmr11 and Lmr13. We detected a strong effect of sex on some of these genes. We also mapped additional genes controlling splenomegaly and hepatomegaly. This resulted in a systematized insight into genetic control of spread and load of Leishmania parasites and visceral pathology in the mammalian organism.
- Klíčová slova
- Leishmania major, PCR-ELISA, QTL, mouse model, parasite load, sex influence, susceptibility to Infection, visceral leishmaniasis,
- MeSH
- interakce hostitele a parazita MeSH
- Leishmania major * MeSH
- leishmanióza viscerální genetika parazitologie MeSH
- myši MeSH
- parazitární zátěž * MeSH
- pohlavní dimorfismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Tick-borne encephalitis (TBE) is the main tick-borne viral infection in Eurasia. Its manifestations range from inapparent infections and fevers with complete recovery to debilitating or fatal encephalitis. The basis of this heterogeneity is largely unknown, but part of this variation is likely due to host genetic. We have previously found that BALB/c mice exhibit intermediate susceptibility to the infection of TBE virus (TBEV), STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, carrying 12.5% of the STS genome on the background of the BALB/c genome is even more susceptible than BALB/c. Importantly, mouse orthologs of human TBE controlling genes Oas1b, Cd209, Tlr3, Ccr5, Ifnl3 and Il10, are in CcS-11 localized on segments derived from the strain BALB/c, so they are identical in BALB/c and CcS-11. As they cannot be responsible for the phenotypic difference of the two strains, we searched for the responsible STS-derived gene-locus. Of course the STS-derived genes in CcS-11 may operate through regulating or epigenetically modifying these non-polymorphic genes of BALB/c origin. METHODS: To determine the location of the STS genes responsible for susceptibility of CcS-11, we analyzed survival of TBEV-infected F2 hybrids between BALB/c and CcS-11. CcS-11 carries STS-derived segments on eight chromosomes. These were genotyped in the F2 hybrid mice and their linkage with survival was tested by binary trait interval mapping. We have sequenced genomes of BALB/c and STS using next generation sequencing and performed bioinformatics analysis of the chromosomal segment exhibiting linkage with TBEV survival. RESULTS: Linkage analysis revealed a novel suggestive survival-controlling locus on chromosome 7 linked to marker D7Nds5 (44.2 Mb). Analysis of this locus for polymorphisms between BALB/c and STS that change RNA stability and genes' functions led to detection of 9 potential candidate genes: Cd33, Klk1b22, Siglece, Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3. One of them, Cd33, carried a nonsense mutation in the STS strain. CONCLUSIONS: The robust genetic system of recombinant congenic strains of mice enabled detection of a novel suggestive locus on chromosome 7. This locus contains 9 candidate genes, which will be focus of future studies not only in mice but also in humans.
- Klíčová slova
- Candidate gene, Chromosome 7, Mouse model, Survival, Susceptibility locus, Tick-borne encephalitis virus (TBEV),
- MeSH
- ABC transportéry genetika MeSH
- genotyp MeSH
- lidé MeSH
- lidské chromozomy, pár 7 genetika MeSH
- mapování chromozomů * MeSH
- myši MeSH
- transportní proteiny genetika MeSH
- virové nemoci mortalita MeSH
- viry klíšťové encefalitidy patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ABC transportéry MeSH
- transportní proteiny MeSH
Interferon-induced GTPases [guanylate-binding proteins (GBPs)] play an important role in inflammasome activation and mediate innate resistance to many intracellular pathogens, but little is known about their role in leishmaniasis. We therefore studied expression of Gbp2b/Gbp1 and Gbp5 mRNA in skin, inguinal lymph nodes, spleen, and liver after Leishmania major infection and in uninfected controls. We used two different groups of related mouse strains: BALB/c, STS, and CcS-5, CcS-16, and CcS-20 that carry different combinations of BALB/c and STS genomes, and strains O20, C57BL/10 (B10) and B10.O20, OcB-9, and OcB-43 carrying different combinations of O20 and B10 genomes. The strains were classified on the basis of size and number of infection-induced skin lesions as highly susceptible (BALB/c, CcS-16), susceptible (B10.O20), intermediate (CcS-20), and resistant (STS, O20, B10, OcB-9, OcB-43). Some uninfected strains differed in expression of Gbp2b/Gbp1 and Gbp5, especially of Gbp2b/Gbp1 in skin. Uninfected BALB/c and STS did not differ in their expression, but in CcS-5, CcS-16, and CcS-20, which all carry BALB/c-derived Gbp gene-cluster, expression of Gbp2b/Gbp1 exceeds that of both parents. These data indicate trans-regulation of Gbps. Infection resulted in approximately 10× upregulation of Gbp2b/Gbp1 and Gbp5 mRNAs in organs of both susceptible and resistant strains, which was most pronounced in skin. CcS-20 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin, whereas CcS-16 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin and liver. This indicates a trans-regulation present in infected mice CcS-16 and CcS-20. Immunostaining of skin of five strains revealed in resistant and intermediate strains STS, CcS-5, O20, and CcS-20 tight co-localization of Gbp2b/Gbp1 protein with most L. major parasites, whereas in the highly susceptible strain, BALB/c most parasites did not associate with Gbp2b/Gbp1. In conclusion, expression of Gbp2b/Gbp1 and Gbp5 was increased even in organs of clinically asymptomatic resistant mice. It suggests a hidden inflammation, which might contribute to control of persisting parasites. This is supported by the co-localization of Gbpb2/Gbp1 protein and L. major parasites in skin of resistant and intermediate but not highly susceptible mice.
- Klíčová slova
- Leishmania major, a hidden inflammation, genetic control, guanylate-binding proteins, recombinant congenic strains,
- MeSH
- druhová specificita MeSH
- játra metabolismus MeSH
- kůže metabolismus MeSH
- leishmanióza kožní genetika MeSH
- lymfatické uzliny metabolismus MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- proteiny vázající GTP genetika MeSH
- regulace genové exprese MeSH
- slezina metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Gbp2b protein, mouse MeSH Prohlížeč
- Gbp5 protein, mouse MeSH Prohlížeč
- proteiny vázající GTP MeSH
BACKGROUND: Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance. METHODS: We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental "donor" strain STS and 87.5% genes from the "background" strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA. RESULTS: The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females. CONCLUSIONS: We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
- Klíčová slova
- Eosinophil infiltration, Genetic control, Leishmania major, Mouse model, QTL, Sex influence,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology. METHODS: We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses. PRINCIPAL FINDINGS: We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology. CONCLUSION: We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.
- MeSH
- genetické lokusy MeSH
- interakce hostitele a patogenu * MeSH
- leishmanióza kožní genetika MeSH
- mapování chromozomů * MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- náchylnost k nemoci * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. METHODS: TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. RESULTS: An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. CONCLUSIONS: Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
- MeSH
- buněčná imunita imunologie MeSH
- centrální nervový systém patologie MeSH
- chemokiny biosyntéza MeSH
- cytokiny biosyntéza MeSH
- genotyp MeSH
- klíšťová encefalitida imunologie patologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové proteiny biosyntéza MeSH
- messenger RNA biosyntéza genetika MeSH
- mozek - chemie fyziologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- neutralizující protilátky biosyntéza MeSH
- odolnost vůči nemocem MeSH
- plakové testy MeSH
- protilátky virové biosyntéza genetika MeSH
- virová nálož MeSH
- viry klíšťové encefalitidy * MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokiny MeSH
- cytokiny MeSH
- membránové proteiny MeSH
- messenger RNA MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH