Most cited article - PubMed ID 22235327
Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
- Keywords
- antenna proteins, detergent critical micelle concentration, fluorescence correlation spectroscopy, non-photochemical quenching, photoprotection, photosynthesis, protein oligomerization,
- MeSH
- Chlorophyll chemistry genetics radiation effects MeSH
- Fluorescence MeSH
- Spectrometry, Fluorescence MeSH
- Photosynthesis genetics MeSH
- Photosystem II Protein Complex genetics radiation effects MeSH
- Phototrophic Processes genetics MeSH
- Antennapedia Homeodomain Protein chemistry genetics MeSH
- Hydrogen-Ion Concentration MeSH
- Protein Aggregates genetics MeSH
- Cluster Analysis MeSH
- Light adverse effects MeSH
- Light-Harvesting Protein Complexes chemistry genetics MeSH
- Thylakoids chemistry genetics radiation effects MeSH
- Zeaxanthins genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Antennapedia Homeodomain Protein MeSH
- Protein Aggregates MeSH
- Light-Harvesting Protein Complexes MeSH
- Zeaxanthins MeSH
Calculating the spectroscopic properties of complex conjugated organic molecules in their relaxed state is far from simple. An additional complexity arises for flexible molecules in solution, where the rotational energy barriers are low enough so that nonminimum conformations may become dynamically populated. These metastable conformations quickly relax during the minimization procedures preliminary to density functional theory calculations, and so accounting for their contribution to the experimentally observed properties is problematic. We describe a strategy for stabilizing these nonminimum conformations in silico, allowing their properties to be calculated. Diadinoxanthin and alloxanthin present atypical vibrational properties in solution, indicating the presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in different solvents, we found three different conformations with values for the δ dihedral angle of the end ring ca. 0, 180, and 90° with respect to the plane of the conjugated chain. The latter conformation, a nonglobal minimum, is not stable during the minimization necessary for modeling its spectroscopic properties. To circumvent this classical problem, we used a Car-Parinello MD supermolecular approach, in which diadinoxanthin was solvated by water molecules so that metastable conformations were stabilized by hydrogen-bonding interactions. We progressively removed the number of solvating waters to find the minimum required for this stabilization. This strategy represents the first modeling of a carotenoid in a distorted conformation and provides an accurate interpretation of the experimental data.
- Publication type
- Journal Article MeSH
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
- MeSH
- Chlorophyll A metabolism MeSH
- Chlorophyll metabolism MeSH
- Cryptophyta cytology metabolism radiation effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Cell Movement radiation effects MeSH
- Light MeSH
- Calcium metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Chlorophyll MeSH
- chlorophyll c MeSH Browser
- Photosystem II Protein Complex MeSH
- Calcium MeSH
Photoprotective non-photochemical quenching (NPQ) represents an effective way to dissipate the light energy absorbed in excess by most phototrophs. It is often claimed that NPQ formation/relaxation kinetics are determined by xanthophyll composition. We, however, found that, for the alveolate alga Chromera velia, this is not the case. In the present paper, we investigated the reasons for the constitutive high rate of quenching displayed by the alga by comparing its light harvesting strategies with those of a model phototroph, the land plant Spinacia oleracea. Experimental results and in silico studies support the idea that fast quenching is due not to xanthophylls, but to intrinsic properties of the Chromera light harvesting complex (CLH) protein, related to amino acid composition and protein folding. The pKa for CLH quenching was shifted by 0.5 units to a higher pH compared with higher plant antennas (light harvesting complex II; LHCII). We conclude that, whilst higher plant LHCIIs are better suited for light harvesting, CLHs are 'natural quenchers' ready to switch into a dissipative state. We propose that organisms with antenna proteins intrinsically more sensitive to protons, such as C. velia, carry a relatively high concentration of violaxanthin to improve their light harvesting. In contrast, higher plants need less violaxanthin per chlorophyll because LHCII proteins are more efficient light harvesters and instead require co-factors such as zeaxanthin and PsbS to accelerate and enhance quenching.
- MeSH
- Alveolata physiology MeSH
- Algal Proteins metabolism MeSH
- Photosynthesis * MeSH
- Protons * MeSH
- Protozoan Proteins metabolism MeSH
- Plant Proteins metabolism MeSH
- Spinacia oleracea physiology MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Algal Proteins MeSH
- Protons * MeSH
- Protozoan Proteins MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes four nuclear receptors, namely orthologue of RXR (NR2B), HNF4 (NR2A), COUP-TF (NR2F) and ERR (NR3B) that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR) binds 9-cis retinoic acid (9-cis-RA) with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40) which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.
- Keywords
- 9-cis retinoic acid, COUP, ERR, Food, HNF4, Nuclear receptor, RXR, Trichoplax adhaerens,
- Publication type
- Journal Article MeSH
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
- Keywords
- ions, light-harvesting protein complexes, non-photochemical quenching, photoprotection, photosynthesis, state transitions,
- Publication type
- Journal Article MeSH
- Review MeSH
Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.
- Keywords
- Blue/low light adaptation, chlorophyll a/c antenna, cryptophytes, growth stage, non-photochemical quenching, state transitions.,
- MeSH
- Cryptophyta growth & development physiology MeSH
- Photochemical Processes * MeSH
- Photosynthesis MeSH
- Carbon Dioxide metabolism MeSH
- Light MeSH
- Electron Transport * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Carbon Dioxide MeSH
Plants collect light for photosynthesis using light-harvesting complexes (LHCs)-an array of chlorophyll proteins that are able to reversibly switch from harvesting to energy-dissipation mode to prevent damage of the photosynthetic apparatus. LHC antennae as well as other members of the LHC superfamily evolved from cyanobacterial ancestors called high light-inducible proteins (Hlips). Here, we characterized a purified Hlip family member HliD isolated from the cyanobacterium Synechocystis sp. PCC 6803. We found that the HliD binds chlorophyll-a (Chl-a) and β-carotene and exhibits an energy-dissipative conformation. Using femtosecond spectroscopy, we demonstrated that the energy dissipation is achieved via direct energy transfer from a Chl-a Qy state to the β-carotene S1 state. We did not detect any cation of β-carotene that would accompany Chl-a quenching. These results provide proof of principle that this quenching mechanism operates in the LHC superfamily and also shed light on the photoprotective role of Hlips and the evolution of LHC antennae.
- MeSH
- beta Carotene chemistry MeSH
- Chlorophyll A MeSH
- Chlorophyll chemistry MeSH
- Electrons MeSH
- Spectrometry, Fluorescence MeSH
- Photochemical Processes * MeSH
- Photosynthesis MeSH
- Carotenoids chemistry MeSH
- Protein Conformation MeSH
- Energy Transfer MeSH
- Plant Proteins chemistry MeSH
- Plants metabolism MeSH
- Cyanobacteria metabolism MeSH
- Spectrophotometry MeSH
- Light MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Synechocystis metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-carotene MeSH Browser
- beta Carotene MeSH
- Chlorophyll A MeSH
- Chlorophyll MeSH
- Carotenoids MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their light-harvesting system in general. Therefore, we carried out a detailed analysis of phycobilisome dynamics in several red alga strains and compared these results with the presence (or absence) of photoprotective mechanisms. Our data conclusively prove phycobilisome mobility in two model mesophilic red alga strains, Porphyridium cruentum and Rhodella violacea. In contrast, there was almost no phycobilisome mobility in the thermophilic red alga Cyanidium caldarium that was not caused by a decrease in lipid desaturation in this extremophile. Experimental data attributed this immobility to the strong phycobilisome-photosystem interaction that highly restricted phycobilisome movement. Variations in phycobilisome mobility reflect the different ways in which light-harvesting antennae can be regulated in mesophilic and thermophilic red algae. Fluorescence changes attributed in cyanobacteria to state transitions were observed only in mesophilic P. cruentum with mobile phycobilisomes, and they were absent in the extremophilic C. caldarium with immobile phycobilisomes. We suggest that state transitions have an important regulatory function in mesophilic red algae; however, in thermophilic red algae, this process is replaced by nonphotochemical quenching.
- Publication type
- Journal Article MeSH
The mobility of photosynthetic proteins represents an important factor that affects light-energy conversion in photosynthesis. The specific feature of photosynthetic proteins mobility can be currently measured in vivo using advanced microscopic methods, such as fluorescence recovery after photobleaching which allows the direct observation of photosynthetic proteins mobility on a single cell level. The heterogeneous organization of thylakoid membrane proteins results in heterogeneity in protein mobility. The thylakoid membrane contains both, protein-crowded compartments with immobile proteins and fluid areas (less crowded by proteins), allowing restricted diffusion of proteins. This heterogeneity represents an optimal balance as protein crowding is necessary for efficient light-energy conversion, and protein mobility plays an important role in the regulation of photosynthesis. The mobility is required for an optimal light-harvesting process (e.g., during state transitions), and also for transport of proteins during their synthesis or repair. Protein crowding is then a key limiting factor of thylakoid membrane protein mobility; the less thylakoid membranes are crowded by proteins, the higher protein mobility is observed. Mobility of photosynthetic proteins outside the thylakoid membrane (lumen and stroma/cytosol) is less understood. Cyanobacterial phycobilisomes attached to the stromal side of the thylakoid can move relatively fast. Therefore, it seems that stroma with their active enzymes of the Calvin-Benson cycle, are a more fluid compartment in comparison to the rather rigid thylakoid lumen. In conclusion, photosynthetic protein diffusion is generally slower in comparison to similarly sized proteins from other eukaryotic membranes or organelles. Mobility of photosynthetic proteins resembles restricted protein diffusion in bacteria, and has been rationalized by high protein crowding similar to that of thylakoids.
- MeSH
- Diffusion MeSH
- Photosynthesis * MeSH
- Phycobilisomes metabolism MeSH
- Plant Proteins metabolism MeSH
- Protein Transport MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Phycobilisomes MeSH
- Plant Proteins MeSH