Nejvíce citovaný článek - PubMed ID 22966016
Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well.
- Klíčová slova
- BER glycosylases, DNA repair, Oxidative DNA damage, colorectal cancer,
- MeSH
- DNA-glykosylasy * genetika metabolismus MeSH
- familiární adenomatózní polypóza MeSH
- kolorektální nádory * patologie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- oprava DNA genetika MeSH
- oxidační stres genetika MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-glykosylasy * MeSH
- mutY adenine glycosylase MeSH Prohlížeč
- oxoguanine glycosylase 1, human MeSH Prohlížeč
- protoonkogenní proteiny p21(ras) MeSH
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
- Klíčová slova
- DNA damage response, TP53 mutational status, cancer progression, cancer risk, cancer therapy, interactions, telomere homeostasis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.
- MeSH
- buněčné linie MeSH
- kometový test metody MeSH
- lidé MeSH
- oprava DNA * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, highpenetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
- Klíčová slova
- DNA repair, carcinogenesis, ovarian cancer, prognosis, therapy response,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
- Klíčová slova
- DNA repair, base excision repair (BER)glycosylases, colorectal cancer, oxidative DNA damage,
- MeSH
- buněčné mikroprostředí MeSH
- cílená molekulární terapie MeSH
- DNA-glykosylasy metabolismus MeSH
- kolorektální nádory etiologie metabolismus patologie terapie MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- oprava DNA MeSH
- oxidační stres * MeSH
- poškození DNA * MeSH
- střevní sliznice metabolismus mikrobiologie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA-glykosylasy MeSH
BACKGROUND: This study addresses involvement of major 5-fluorouracil (5-FU) pathway genes in the prognosis of colorectal carcinoma patients. METHODS: Testing set and two validation sets comprising paired tumor and adjacent mucosa tissue samples from 151 patients were used for transcript profiling of 15 5-FU pathway genes by quantitative real-time PCR and DNA methylation profiling by high resolution melting analysis. Intratumoral molecular profiles were correlated with clinical data of patients. Protein levels of two most relevant candidate markers were assessed by immunoblotting. RESULTS: Downregulation of DPYD and upregulation of PPAT, UMPS, RRM2, and SLC29A1 transcripts were found in tumors compared to adjacent mucosa in testing and validation sets of patients. Low RRM2 transcript level significantly associated with poor response to the first-line palliative 5-FU-based chemotherapy in the testing set and with poor disease-free interval of patients in the validation set irrespective of 5-FU treatment. UPP2 was strongly methylated while its transcript absent in both tumors and adjacent mucosa. DPYS methylation level was significantly higher in tumor tissues compared to adjacent mucosa samples. Low intratumoral level of UPB1 methylation was prognostic for poor disease-free interval of the patients (P = 0.0002). The rest of the studied 5-FU genes were not methylated in tumors or adjacent mucosa. CONCLUSIONS: The observed overexpression of several 5-FU activating genes and DPYD downregulation deduce that chemotherapy naïve colorectal tumors share favorable gene expression profile for 5-FU therapy. Low RRM2 transcript and UPB1 methylation levels present separate poor prognosis factors for colorectal carcinoma patients and should be further investigated.
- Klíčová slova
- 5-fluorouracil, Colorectal carcinoma, Expression, Methylation, Prognosis,
- MeSH
- CpG ostrůvky MeSH
- fluoruracil farmakologie MeSH
- kolorektální nádory genetika metabolismus mortalita patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA MeSH
- promotorové oblasti (genetika) MeSH
- protinádorové antimetabolity farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- ribonukleosiddifosfátreduktasa genetika metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- signální transdukce účinky léků MeSH
- staging nádorů MeSH
- stanovení celkové genové exprese * MeSH
- stupeň nádoru MeSH
- transkriptom * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluoruracil MeSH
- protinádorové antimetabolity MeSH
- ribonucleotide reductase M2 MeSH Prohlížeč
- ribonukleosiddifosfátreduktasa MeSH
Successful molecular analyses of human solid tissues require intact biological material with well-preserved nucleic acids, proteins, and other cell structures. Pre-analytical handling, comprising of the collection of material at the operating theatre, is among the first critical steps that influence sample quality. The aim of this study was to compare the experimental outcomes obtained from samples collected and stored by the conventional means of snap freezing and by PAXgene Tissue System (Qiagen). These approaches were evaluated by measuring rRNA and mRNA integrity of the samples (RNA Quality Indicator and Differential Amplification Method) and by gene expression profiling. The collection procedures of the biological material were implemented in two hospitals during colon cancer surgery in order to identify the impact of the collection method on the experimental outcome. Our study shows that the pre-analytical sample handling has a significant effect on the quality of RNA and on the variability of qPCR data. PAXgene collection mode proved to be more easily implemented in the operating room and moreover the quality of RNA obtained from human colon tissues by this method is superior to the one obtained by snap freezing.
- MeSH
- DNA nádorová genetika MeSH
- DNA-topoisomerasy I genetika MeSH
- dusík MeSH
- fixace tkání metody MeSH
- karcinom chemie chirurgie MeSH
- kolon chemie MeSH
- kryoprezervace přístrojové vybavení metody MeSH
- kvantitativní polymerázová řetězová reakce přístrojové vybavení metody MeSH
- lidé MeSH
- nádorové proteiny biosyntéza genetika MeSH
- nádory tračníku chemie chirurgie MeSH
- ochrana biologická přístrojové vybavení metody MeSH
- odběr biologického vzorku přístrojové vybavení metody MeSH
- regulace genové exprese u nádorů MeSH
- reprodukovatelnost výsledků MeSH
- ribozomální DNA genetika MeSH
- řízení kvality MeSH
- RNA nádorová analýza genetika izolace a purifikace MeSH
- RNA ribozomální 18S genetika MeSH
- roztoky pro uchovávání orgánů MeSH
- rychlé screeningové testy přístrojové vybavení metody MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA nádorová MeSH
- DNA-topoisomerasy I MeSH
- dusík MeSH
- nádorové proteiny MeSH
- ribozomální DNA MeSH
- RNA nádorová MeSH
- RNA ribozomální 18S MeSH
- roztoky pro uchovávání orgánů MeSH
- TOP1 protein, human MeSH Prohlížeč
Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.
- Klíčová slova
- 3′UTR polymorphisms, MRE11A, colorectal cancer risk and clinical outcomes, double-strand break repair (DSBR) genes, miRNA binding sites,
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- DNA opravný a rekombinační protein Rad52 genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- homologní protein MRE11 genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- míra přežití MeSH
- mladý dospělý MeSH
- nádorové biomarkery genetika MeSH
- následné studie MeSH
- oprava DNA genetika MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná místa MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- DNA opravný a rekombinační protein Rad52 MeSH
- homologní protein MRE11 MeSH
- mikro RNA MeSH
- MRE11 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- RAD52 protein, human MeSH Prohlížeč
Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.
- Klíčová slova
- DNA repair, animal studies, base excision repair (BER), clinical studies, comet assay, human biomonitoring, nucleotide excision repair (NER), occupational studies,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Thousands of DNA lesions are estimated to occur in each cell every day and almost all are recognized and repaired. DNA repair is an essential system that prevents accumulation of mutations which can lead to serious cellular malfunctions. Phenotypic evaluation of DNA repair activity of individuals is a relatively new approach. Methods to assess base and nucleotide excision repair pathways (BER and NER) in peripheral blood cells based on modified comet assay protocols have been widely applied in human epidemiological studies. These provided some interesting observations of individual DNA repair activity being suppressed among cancer patients. However, extension of these results to cancer target tissues requires a different approach. Here we describe the evaluation of BER and NER activities in extracts from deep-frozen colon biopsies using an upgraded version of the in vitro comet-based DNA repair assay in which 12 reactions on one microscope slide can be performed. The aim of this report is to provide a detailed, easy-to-follow protocol together with results of optimization experiments. Additionally, results obtained by functional assays were analyzed in the context of other cellular biomarkers, namely single nucleotide polymorphisms and gene expressions. We have shown that measuring DNA repair activity is not easily replaceable by genomic or transcriptomic approaches, but should be applied with the latter techniques in a complementary manner. The ability to measure DNA repair directly in cancer target tissues might finally answer questions about the tissue-specificity of DNA repair processes and their real involvement in the process of carcinogenesis.
- Klíčová slova
- base excision repair, human solid tissue, in vitro comet-based DNA repair assay, methodological report, nucleotide excision repair,
- Publikační typ
- časopisecké články MeSH