INTRODUCTION: Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. METHODS: We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. RESULTS: Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. DISCUSSION: Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
- Keywords
- aquaporin 4, astrocytes, brain edema, ischemia, transient receptor potential vanilloid 4,
- Publication type
- Journal Article MeSH
INTRODUCTION: Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. METHODS AND RESULTS: In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. CONCLUSION: Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
- Keywords
- AQP4, ECS diffusion, MRI, TRPV4, brain edema, cerebral ischemia,
- Publication type
- Journal Article MeSH
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
- Keywords
- Alzheimer’s disease, ECS diffusion, astrocyte heterogeneity, astrocytes, ion uptake, volume changes,
- Publication type
- Journal Article MeSH
Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.
- Keywords
- Aging, Diffusion, Extracellular matrix, Extracellular space, Hapln4,
- MeSH
- Trapezoid Body metabolism pathology MeSH
- Diffusion * MeSH
- Extracellular Matrix Proteins deficiency MeSH
- Extracellular Matrix metabolism pathology MeSH
- Extracellular Space metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Protein Deficiency metabolism pathology MeSH
- Organ Culture Techniques MeSH
- Peripheral Nerves metabolism pathology MeSH
- Nerve Tissue Proteins deficiency MeSH
- Auditory Pathways metabolism pathology MeSH
- Aging metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Extracellular Matrix Proteins MeSH
- Hapln4 protein, mouse MeSH Browser
- Nerve Tissue Proteins MeSH
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).
- MeSH
- Aquaporin 4 genetics metabolism MeSH
- Astrocytes metabolism pathology MeSH
- Biological Transport MeSH
- Potassium metabolism MeSH
- Potassium Channels genetics metabolism MeSH
- Brain Edema genetics metabolism pathology MeSH
- Glial Fibrillary Acidic Protein MeSH
- Glucose deficiency MeSH
- Microscopy, Confocal MeSH
- Membrane Proteins deficiency genetics MeSH
- Microtomy MeSH
- Cerebral Cortex metabolism pathology MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Osmolar Concentration MeSH
- Osmotic Pressure MeSH
- Promoter Regions, Genetic MeSH
- Nerve Tissue Proteins genetics metabolism MeSH
- Calcium-Binding Proteins deficiency genetics MeSH
- Gene Expression Regulation MeSH
- Signal Transduction MeSH
- Stereotaxic Techniques MeSH
- Muscle Proteins deficiency genetics MeSH
- Tissue Culture Techniques MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aquaporin 4 MeSH
- Aqp4 protein, mouse MeSH Browser
- Potassium MeSH
- Potassium Channels MeSH
- enhanced green fluorescent protein MeSH Browser
- glial fibrillary astrocytic protein, mouse MeSH Browser
- Glial Fibrillary Acidic Protein MeSH
- Glucose MeSH
- Membrane Proteins MeSH
- Nerve Tissue Proteins MeSH
- Calcium-Binding Proteins MeSH
- Muscle Proteins MeSH
- syntrophin alpha1 MeSH Browser
- Green Fluorescent Proteins MeSH
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment.
- Keywords
- astrocytes, diffusion, extracellular matrix, extracellular space, tortuosity, volume fraction,
- MeSH
- Anisotropy MeSH
- Astrocytes pathology MeSH
- Diffusion MeSH
- Extracellular Matrix physiology MeSH
- Humans MeSH
- Cell Communication physiology MeSH
- Synaptic Transmission physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH