Nejvíce citovaný článek - PubMed ID 23969459
Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.
- Klíčová slova
- Anaesthesia, Carnivorous plant, De-etiolation, Electrical signals, Jasmonates, Wounding,
- MeSH
- anestetika farmakologie MeSH
- fyziologie rostlin MeSH
- hmat účinky léků fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostliny účinky léků metabolismus MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anestetika MeSH
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
- Klíčová slova
- Arabidopsis, anaesthetic, calcium, diethyl ether, jasmonates, ketamine, systemic response,
- Publikační typ
- časopisecké články MeSH
The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.
- Klíčová slova
- Aspartic protease, carnivorous plant, digestive enzymes, electrical signal, jasmonic acid, phytohormone, plant defence, wounding,
- MeSH
- masožravci * MeSH
- masožravé rostliny * MeSH
- proteomika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- coronatine MeSH Prohlížeč
- jasmonic acid MeSH Prohlížeč
- MeSH
- biologická evoluce * MeSH
- masožravé rostliny * MeSH
- smyslové orgány MeSH
- Publikační typ
- časopisecké články MeSH
General volatile anesthetic diethyl ether blocks sensation and responsive behavior not only in animals but also in plants. Here, using a combination of RNA-seq and proteomic LC-MS/MS analyses, we investigated the effect of anesthetic diethyl ether on gene expression and downstream consequences in plant Arabidopsis thaliana. Differential expression analyses revealed reprogramming of gene expression under anesthesia: 6,168 genes were upregulated, 6,310 genes were downregulated, while 9,914 genes were not affected in comparison with control plants. On the protein level, out of 5,150 proteins identified, 393 were significantly upregulated and 227 were significantly downregulated. Among the highest significantly downregulated processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and photosynthesis. However, measurements of chlorophyll a fluorescence did not show inhibition of electron transport through photosystem II. The most significantly upregulated process was the response to heat stress (mainly heat shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, we showed transient increase of cytoplasmic calcium level [Ca2+]cyt in response to diethyl ether application. In addition, cell membrane permeability for ions also increased under anesthesia. The plants pre-treated with diethyl ether, and thus with induced HSPs, had increased tolerance of photosystem II to subsequent heat stress through the process known as cross-tolerance or priming. All these data indicate that diethyl ether anesthesia may partially mimic heat stress in plants through the effect on plasma membrane.
- Klíčová slova
- Arabidopsis, anesthesia, chlorophyll, diethyl ether, heat shock proteins, heat stress, photosystem II,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
- Klíčová slova
- Dionaea, Drosera, Nepenthes, Carnivorous plant, co-option, cost–benefit relationships, digestive enzymes, evolution of carnivory, hunting cycle, mineral nutrient economy, regulation of enzyme secretion, terrestrial and aquatic species,
- MeSH
- fotosyntéza MeSH
- listy rostlin MeSH
- masožravci * MeSH
- rostliny * genetika MeSH
- živiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants' immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host-pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant-pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant-pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant-pathogen interaction and their crucial role in signal transduction.
- Klíčová slova
- lipids, microbes, oxylipins, pathogens, phosphatidic acid, plants,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND AND AIMS: General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS: We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS: Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS: The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
- Klíčová slova
- Dionaea muscipula, Anaesthesia, Venus flytrap, action potential, anaesthetic, carnivorous plant, diethyl ether, electrical signal, jasmonic acid, plant movement,
- MeSH
- anestezie * MeSH
- cyklopentany MeSH
- Droseraceae * MeSH
- ether MeSH
- oxylipiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- ether MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
BACKGROUND: The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE: This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS: Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
- Klíčová slova
- Action potential, Dionaea, Drosera, Nepenthes, Venus flytrap, botanical carnivory, carnivorous plant, cost–benefit, electrical signalling, jasmonates,
- MeSH
- biologická evoluce * MeSH
- biologické modely * MeSH
- Droseraceae fyziologie MeSH
- fyziologie rostlin * MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.
- MeSH
- buněčný převod mechanických signálů MeSH
- cyklopentany metabolismus MeSH
- cysteinové endopeptidasy metabolismus MeSH
- Droseraceae enzymologie fyziologie MeSH
- listy rostlin enzymologie fyziologie MeSH
- oxylipiny metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cysteinové endopeptidasy MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH