Most cited article - PubMed ID 24587463
Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
- Keywords
- Bangladesh, IgG antibodies, Leishmania donovani, Marker of exposure, Phlebotomus argentipes, Salivary glands,
- MeSH
- Insect Proteins * immunology MeSH
- Bites and Stings epidemiology MeSH
- Leishmania donovani MeSH
- Humans MeSH
- Phlebotomus * MeSH
- Salivary Proteins and Peptides * immunology MeSH
- Saliva MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Bangladesh epidemiology MeSH
- Names of Substances
- Insect Proteins * MeSH
- Salivary Proteins and Peptides * MeSH
BACKGROUND: Sand flies are vectors of Leishmania spp., the causative agents of leishmaniasis in vertebrates, including man. The sand fly saliva contains powerful pharmacologically active substances that prevent hemostasis and enhance Leishmania spp. infections. On the other hand, salivary proteins can protect vaccinated mice challenged with parasites. Therefore, sand fly salivary proteins are relevant for the epidemiology of leishmaniasis and can be a potential target for a vaccine against leishmaniasis. Despite this, studies on sand fly salivary glands (SGs) are limited. METHODS: The present study analyzes, in detail, the morphology, anatomy and ultrastructure of the SGs of sand fly vectors of the genera Lutzomyia and Phlebotomus. We used histology, transmission and scanning electron microscopy and lectin labeling associated with confocal laser microscopy. RESULTS: The SGs have conserved and distinct morphological aspects according to the distinct sand fly species. Each SG has a single rounded lobe constituting of c.100-120 secretory cells. The SG secretory cells, according to their ultrastructure and lectin binding, were classified into five different subpopulations, which may differ in secretory pathways. CONCLUSIONS: To the best of our knowledge, these morphological details of sand fly salivary glands are described for the first time. Further studies are necessary to better understand the role of these different cell types and better relate them with the production and secretion of the saliva substances, which has a fundamental role in the interaction of the sand fly vectors with Leishmania.
- Keywords
- Lectin binding, Sand fly vectors, Secretory cell population, Ultrastructure,
- MeSH
- Microscopy, Electron MeSH
- Disease Vectors MeSH
- Mosquito Vectors anatomy & histology parasitology ultrastructure MeSH
- Leishmaniasis transmission MeSH
- Phlebotomus anatomy & histology parasitology ultrastructure MeSH
- Psychodidae anatomy & histology parasitology ultrastructure MeSH
- Salivary Glands parasitology ultrastructure MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods' proteins. In the sialome, all proteins typical for sand fly saliva were identified-antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5'nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
- MeSH
- Apyrase analysis genetics metabolism MeSH
- Phylogeny MeSH
- Insect Proteins analysis genetics metabolism MeSH
- Hyaluronoglucosaminidase analysis genetics metabolism MeSH
- Lizards MeSH
- Mice MeSH
- Psychodidae genetics metabolism MeSH
- Receptors, Odorant analysis genetics metabolism MeSH
- Salivary Glands metabolism MeSH
- Transcriptome * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Apyrase MeSH
- Insect Proteins MeSH
- Hyaluronoglucosaminidase MeSH
- odorant-binding protein MeSH Browser
- Receptors, Odorant MeSH
BACKGROUND: Hosts repeatedly bitten by sand flies develop antibodies against sand fly saliva and screening of these immunoglobulins can be employed to estimate the risk of Leishmania transmission, to indicate the feeding preferences of sand flies, or to evaluate the effectiveness of vector control campaigns. Previously, antibodies to sand fly saliva were detected using whole salivary gland homogenate (SGH) or recombinant proteins, both of which also have their disadvantages. This is the first study on sand flies where short peptides designed based on salivary antigens were successfully utilized for antibody screening. METHODOLOGY/PRINCIPAL FINDINGS: Specific IgG was studied in hosts naturally exposed to Phlebotomus orientalis, the main vector of Leishmania donovani in East Africa. Four peptides were designed by the commercial program EpiQuest-B, based on the sequences of the two most promising salivary antigens, yellow-related protein and ParSP25-like protein. Short amino acid peptides were synthesised and modified for ELISA experiments. Specific anti-P. orientalis IgG was detected in sera of dogs, goats, and sheep from Ethiopia. The peptide OR24 P2 was shown to be suitable for antibody screening; it correlated positively with SGH and its specificity and sensitivity were comparable or even better than that of previously published recombinant proteins. CONCLUSIONS/SIGNIFICANCE: OR24 P2, the peptide based on salivary antigen of P. orientalis, was shown to be a valuable tool for antibody screening of domestic animals naturally exposed to P. orientalis. We suggest the application of this promising methodology using species-specific short peptides to other sand fly-host combinations.
- MeSH
- Enzyme-Linked Immunosorbent Assay methods MeSH
- Immunoglobulin G blood MeSH
- Goats MeSH
- Sheep MeSH
- Peptides immunology MeSH
- Phlebotomus immunology MeSH
- Mass Screening methods MeSH
- Antibodies blood MeSH
- Dogs MeSH
- Sensitivity and Specificity MeSH
- Salivary Proteins and Peptides immunology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia MeSH
- Names of Substances
- Immunoglobulin G MeSH
- Peptides MeSH
- Antibodies MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers' sera against recombinant P. orientalis salivary antigens. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. CONCLUSIONS/SIGNIFICANCE: This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses.
- MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Insect Proteins genetics immunology MeSH
- Immunoglobulin G immunology MeSH
- Insect Bites and Stings immunology parasitology MeSH
- Humans MeSH
- Phlebotomus genetics immunology physiology MeSH
- Recombinant Proteins genetics immunology MeSH
- Salivary Proteins and Peptides genetics immunology MeSH
- Saliva immunology MeSH
- Antibody Formation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa, Eastern MeSH
- Names of Substances
- Insect Proteins MeSH
- Immunoglobulin G MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. METHODS AND FINDINGS: In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. CONCLUSIONS: In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
- MeSH
- Leishmania immunology MeSH
- Psychodidae parasitology physiology MeSH
- Salivary Proteins and Peptides immunology metabolism MeSH
- Saliva immunology parasitology MeSH
- Feeding Behavior * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Salivary Proteins and Peptides MeSH
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.
- MeSH
- Phylogeny MeSH
- Glycosylation MeSH
- Insect Proteins chemistry metabolism MeSH
- Protein Conformation MeSH
- Ligands MeSH
- Models, Molecular MeSH
- Psychodidae * MeSH
- Amino Acid Sequence MeSH
- Saliva metabolism MeSH
- Static Electricity MeSH
- Binding Sites MeSH
- Hydrogen Bonding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insect Proteins MeSH
- Ligands MeSH
BACKGROUND: Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. METHODOLOGY/PRINCIPAL FINDINGS: Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. CONCLUSIONS/SIGNIFICANCE: Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.
- MeSH
- Antigens genetics immunology MeSH
- Mass Spectrometry MeSH
- Animals, Domestic * MeSH
- Immunoblotting MeSH
- Insect Bites and Stings diagnosis MeSH
- Goats MeSH
- Sheep MeSH
- Antibodies blood MeSH
- Dogs MeSH
- Psychodidae genetics immunology MeSH
- Recombinant Proteins genetics immunology MeSH
- Salivary Proteins and Peptides genetics immunology MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens MeSH
- Antibodies MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH
Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.
- Keywords
- Culicoides, hyaluronidase, saliva,
- MeSH
- Arbovirus Infections transmission MeSH
- Ceratopogonidae enzymology MeSH
- Insect Vectors enzymology MeSH
- Hyaluronoglucosaminidase metabolism MeSH
- Saliva enzymology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hyaluronoglucosaminidase MeSH
BACKGROUND: The phlebotomine sand fly Phlebotomus perniciosus (Diptera: Psychodidae, Phlebotominae) is a major Old World vector of the protozoan Leishmania infantum, the etiological agent of visceral and cutaneous leishmaniases in humans and dogs, a worldwide re-emerging diseases of great public health concern, affecting 101 countries. Despite the growing interest in the study of this sand fly species in the last years, the development of genomic resources has been limited so far. To increase the available sequence data for P. perniciosus and to start studying the molecular basis of the sexual differentiation in sand flies, we performed whole transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females and de novo transcriptome assembly. RESULTS: We assembled 55,393 high quality transcripts, of which 29,292 were unique, starting from adult whole body male and female pools. 11,736 transcripts had at least one functional annotation, including full-length low abundance salivary transcripts, 981 transcripts were classified as putative long non-coding RNAs and 244 transcripts encoded for putative novel proteins specific of the Phlebotominae sub-family. Differential expression analysis identified 8590 transcripts significantly biased between sexes. Among them, some show relaxation of selective constraints when compared to their orthologs of the New World sand fly species Lutzomyia longipalpis. CONCLUSIONS: In this paper, we present a comprehensive transcriptome resource for the sand fly species P. perniciosus built from short-read RNA-seq and we provide insights into sex-specific gene expression at adult stage. Our analysis represents a first step towards the identification of sex-specific genes and pathways and a foundation for forthcoming investigations into this important vector species, including the study of the evolution of sex-biased genes and of the sexual differentiation in phlebotomine sand flies.
- MeSH
- Insect Vectors genetics MeSH
- Leishmania infantum genetics pathogenicity MeSH
- Leishmaniasis, Visceral genetics parasitology MeSH
- Humans MeSH
- Phlebotomus genetics parasitology MeSH
- Sex Characteristics MeSH
- Dogs MeSH
- Amino Acid Sequence MeSH
- Transcriptome genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH