Nejvíce citovaný článek - PubMed ID 24634313
Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment
The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 μM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).
- Klíčová slova
- Acetaminophen, Differential pulse voltammetry, Electrodeposition, Electroplating, Screen-printed electrode, Sensor array,
- MeSH
- biosenzitivní techniky metody MeSH
- dopamin * analýza MeSH
- elektrochemické techniky * metody přístrojové vybavení MeSH
- elektrody MeSH
- kovové nanočástice * chemie MeSH
- limita detekce MeSH
- paracetamol * analýza MeSH
- uhlík chemie MeSH
- zlato * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dopamin * MeSH
- paracetamol * MeSH
- uhlík MeSH
- zlato * MeSH
The RoScan is a novel, high-accuracy multispectral surface scanning system producing colored 3D models that include a thermal layer. (1) Background: at present, medicine still exhibits a lack of objective diagnostic methods. As many diseases involve thermal changes, thermography may appear to be a convenient technique for the given purpose; however, there are three limiting problems: exact localization, resolution vs. range, and impossibility of quantification. (2) Methods: the basic principles and benefits of the system are described. The procedures rely on a robotic manipulator with multiple sensors to create a multispectral 3D model. Importantly, the structure is robust, scene-independent, and features quantifiable measurement uncertainty; thus, all of the above problems of medical thermography are resolved. (3) Results: the benefits were demonstrated by several pilot case studies: medicament efficacy assessment in dermatology, objective recovery progress assessment in traumatology, applied force quantification in forensic sciences, exact localization of the cause of pain in physiotherapy, objective assessment of atopic dermatitis, and soft tissue volumetric measurements. (4) Conclusion: the RoScan addresses medical quantification, which embodies a frequent problem in several medical sectors, and can deliver new, objective information to improve the quality of healthcare and to eliminate false diagnoses.
- Klíčová slova
- 3D thermography, high-accuracy 3D scanning, multimodal imaging, multispectral imaging, robotic 3D scanning,
- MeSH
- atopická dermatitida diagnóza MeSH
- lidé MeSH
- měření bolesti MeSH
- robotika * MeSH
- soudní vědy MeSH
- termografie * MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
- Klíčová slova
- active properties, carbon quantum dots, furcellaran, graphene oxide, linseed oil preservation, maghemite nanoparticles, nanocomposite films,
- Publikační typ
- časopisecké články MeSH
Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm² that can be varied as required for analysis. The LODs were 80 ng·mL-1 for Cd(II) and 50 ng·mL-1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO₃ environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment.
- Klíčová slova
- amalgam electrodes, electrochemistry, heavy metals, soil, turbid sample,
- Publikační typ
- časopisecké články MeSH
Magnetic particles (MPs) have been widely used in biological applications in recent years as a carrier for various molecules. Their big advantage is in repeated use of immobilized molecules including enzymes. Acetylcholinesterase (AChE) is an enzyme playing crucial role in neurotransmission and the enzyme is targeted by various molecules like Alzheimer's drugs, pesticides and warfare agents. In this work, an electrochemical biosensor having AChE immobilized onto MPs and stabilized through glutaraldehyde (GA) molecule was proposed for assay of the neurotoxic compounds. The prepared nanoparticles were modified by pure AChE and they were used for the measurement anti-Alzheimer's drug galantamine and carbamate pesticide carbofuran with limit of detection 1.5 µM and 20 nM, respectively. All measurements were carried out using screen-printed sensor with carbon working, silver reference, and carbon auxiliary electrode. Standard Ellman's assay was used for validation measurement of both inhibitors. Part of this work was the elimination of reversible inhibitors represented by galantamine from the active site of AChE. For this purpose, we used a lower pH to get the original activity of AChE after inhibition by galantamine. We also observed decarbamylation of the AChE-carbofuran adduct. Influence of organic solvents to AChE as well as repeatability of measurement with MPs with AChE was also established.
- Klíčová slova
- acetylcholinesterase, carbofuran, electrochemistry, galantamine, magnetic particles, nanomaterial, nanoparticles, screen-printed sensor,
- MeSH
- acetylcholinesterasa MeSH
- biosenzitivní techniky MeSH
- cholinesterasové inhibitory MeSH
- enzymy imobilizované MeSH
- nanočástice * MeSH
- organofosforové sloučeniny MeSH
- pesticidy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- enzymy imobilizované MeSH
- organofosforové sloučeniny MeSH
- pesticidy MeSH
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.
- Klíčová slova
- carbon, cyclic voltammetry, electrochemical impedance spectroscopy, electrochemistry, graphene oxide, heavy metal detection, reduced graphene oxide,
- Publikační typ
- časopisecké články MeSH
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.
- Publikační typ
- časopisecké články MeSH
Cisplatin belongs to the most widely used cytostatic drugs. The determination of the presence of the DNA-cisplatin adducts may not only signal the guanine-rich regions but also monitor the interaction reaction between DNA and the drug in terms of speed of interaction. In this work, the combined advantages of magnetic particles-based isolation/purification with fluorescent properties of quantum dots (QDs) and antibodies targeted on specific recognition of DNA-cisplatin adducts are demonstrated. The formation of a complex between magnetic particles with surface modified by anti-dsDNA antibody, cisplatin-modified DNA and QDs labelled anti-cisplatin-modified DNA antibody was suggested and optimized.
- Klíčová slova
- Anti-DNA Antibodies, Cisplatin, Magnetic Separation, Sandwich Analysis,
- Publikační typ
- časopisecké články MeSH
In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933).
- MeSH
- automatizace MeSH
- elektrochemie metody MeSH
- elektrody MeSH
- geologické sedimenty chemie MeSH
- ionty MeSH
- kadmium krev MeSH
- kalibrace MeSH
- kur domácí MeSH
- lidé MeSH
- měď krev MeSH
- neuronové sítě (počítačové) * MeSH
- olovo krev MeSH
- regresní analýza MeSH
- robotika MeSH
- rtuť chemie MeSH
- těžké kovy analýza krev MeSH
- zinek krev MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- kadmium MeSH
- měď MeSH
- olovo MeSH
- rtuť MeSH
- těžké kovy MeSH
- zinek MeSH