Nejvíce citovaný článek - PubMed ID 25557662
A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake
UNLABELLED: The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. HIGHLIGHT: The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.
- Klíčová slova
- P. tricornutum, diatoms, fluorescent proteins, iron, iron starvation induced proteins, proteome, siderophores,
- Publikační typ
- časopisecké články MeSH
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
- Klíčová slova
- APEX2, chloroplast, diatom, infectious disease, iron, metal trafficking, microbiology, phytotransferrin, plant biology,
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- chloroplasty metabolismus MeSH
- multigenová rodina MeSH
- proteomika metody MeSH
- rozsivky genetika metabolismus MeSH
- transferin metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- transferin MeSH
- železo MeSH
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
- Klíčová slova
- Bigelowiella natans, iron, metagenomics, metatranscriptomics, photosynthesis, phytoplankton, proteomics,
- Publikační typ
- časopisecké články MeSH
Oceanic phytoplankton species have highly efficient mechanisms of iron acquisition, as they can take up iron from environments in which it is present at subnanomolar concentrations. In eukaryotes, three main models were proposed for iron transport into the cells by first studying the kinetics of iron uptake in different algal species and then, more recently, by using modern biological techniques on the model diatom Phaeodactylum tricornutum. In the first model, the rate of uptake is dependent on the concentration of unchelated Fe species, and is thus limited thermodynamically. Iron is transported by endocytosis after carbonate-dependent binding of Fe(III)' (inorganic soluble ferric species) to phytotransferrin at the cell surface. In this strategy the cells are able to take up iron from very low iron concentration. In an alternative model, kinetically limited for iron acquisition, the extracellular reduction of all iron species (including Fe') is a prerequisite for iron acquisition. This strategy allows the cells to take up iron from a great variety of ferric species. In a third model, hydroxamate siderophores can be transported by endocytosis (dependent on ISIP1) after binding to the FBP1 protein, and iron is released from the siderophores by FRE2-dependent reduction. In prokaryotes, one mechanism of iron uptake is based on the use of siderophores excreted by the cells. Iron-loaded siderophores are transported across the cell outer membrane via a TonB-dependent transporter (TBDT), and are then transported into the cells by an ABC transporter. Open ocean cyanobacteria do not excrete siderophores but can probably use siderophores produced by other organisms. In an alternative model, inorganic ferric species are transported through the outer membrane by TBDT or by porins, and are taken up by the ABC transporter system FutABC. Alternatively, ferric iron of the periplasmic space can be reduced by the alternative respiratory terminal oxidase (ARTO) and the ferrous ions can be transported by divalent metal transporters (FeoB or ZIP). After reoxidation, iron can be taken up by the high-affinity permease Ftr1.
- Klíčová slova
- iron, iron uptake, micro-algae, ocean, phytoplankton,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Phytoplankton growth is limited in vast oceanic regions by the low bioavailability of iron. Iron fertilization often results in diatom blooms, yet the physiological underpinnings for how diatoms survive in chronically iron-limited waters and outcompete other phytoplankton when iron becomes available are unresolved. We show that some diatoms can use siderophore-bound iron, and exhibit a species-specific recognition for siderophore types. In Phaeodactylum tricornutum, hydroxamate siderophores are taken up without previous reduction by a high-affinity mechanism that involves binding to the cell surface followed by endocytosis-mediated uptake and delivery to the chloroplast. The affinity recorded is the highest ever described for an iron transport system in any eukaryotic cell. Collectively, our observations suggest that there are likely a variety of iron uptake mechanisms in diatoms besides the well-established reductive mechanism. We show that iron starvation-induced protein 1 (ISIP1) plays an important role in the uptake of siderophores, and through bioinformatics analyses we deduce that this protein is largely diatom-specific. We quantify expression of ISIP1 in the global ocean by querying the Tara Oceans atlas of eukaryotic genes and show a link between the abundance and distribution of diatom-associated ISIP1 with ocean provinces defined by chronic iron starvation.
- MeSH
- chloroplasty metabolismus MeSH
- druhová specificita MeSH
- endocytóza * MeSH
- genový knockdown MeSH
- rozsivky fyziologie MeSH
- siderofory metabolismus MeSH
- transport proteinů MeSH
- vodní organismy metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- siderofory MeSH
- železo MeSH
In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.
- MeSH
- biologický transport MeSH
- endocytóza MeSH
- fytoplankton klasifikace genetika metabolismus MeSH
- genom genetika MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- molekulární evoluce MeSH
- mořská voda chemie MeSH
- rozsivky genetika metabolismus MeSH
- transferin metabolismus MeSH
- uhličitany metabolismus MeSH
- vodní organismy klasifikace genetika metabolismus MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- transferin MeSH
- uhličitany MeSH
- železo MeSH
BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.
- Klíčová slova
- Iron, Marine phytoplankton, Ostreococcus, RNA-seq analysis,
- MeSH
- biologická adaptace MeSH
- Chlorophyta klasifikace genetika metabolismus MeSH
- Eukaryota genetika metabolismus MeSH
- fotoperioda MeSH
- fylogeneze MeSH
- fytoplankton genetika metabolismus MeSH
- fyziologický stres MeSH
- homeostáza MeSH
- měď metabolismus MeSH
- oxidace-redukce MeSH
- regulace genové exprese účinky záření MeSH
- rostlinné proteiny genetika metabolismus MeSH
- shluková analýza MeSH
- signální transdukce MeSH
- sloučeniny železa metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- měď MeSH
- rostlinné proteiny MeSH
- sloučeniny železa MeSH
- železo MeSH
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
- Klíčová slova
- Ostreococcus, circadian, ferritin, iron, phytoplankton,
- MeSH
- chemická precipitace MeSH
- cirkadiánní rytmus * účinky léků genetika účinky záření MeSH
- ferritiny genetika metabolismus MeSH
- fytoplankton účinky léků genetika růst a vývoj metabolismus MeSH
- hmotnostní spektrometrie MeSH
- homeostáza * účinky léků genetika účinky záření MeSH
- kinetika MeSH
- mikrobiální viabilita účinky léků účinky záření MeSH
- mořská voda mikrobiologie MeSH
- proteiny vázající železo metabolismus MeSH
- regulace genové exprese účinky léků účinky záření MeSH
- světlo MeSH
- transkriptom genetika MeSH
- western blotting MeSH
- železo metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferritiny MeSH
- proteiny vázající železo MeSH
- železo MeSH