We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
- Klíčová slova
- DEAH-box RNA helicase, DHX15, G-patch, gRNA packaging, retrovirus,
- MeSH
- buněčné jádro metabolismus virologie MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- genom virový MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus * genetika metabolismus fyziologie MeSH
- replikace viru genetika fyziologie MeSH
- RNA virová * metabolismus genetika MeSH
- RNA-helikasy metabolismus genetika MeSH
- sestavení viru * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- DHX15 protein, human MeSH Prohlížeč
- RNA virová * MeSH
- RNA-helikasy MeSH
The Czech Republic, a part of the former Czechoslovakia, has been at the forefront of several research directions in virology, genetics and physiology [...].
- MeSH
- virologie * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodníky MeSH
- Geografické názvy
- Česká republika MeSH
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
- Klíčová slova
- antiviral compounds, antivirals, assembly inhibitor, capsid assembly, capsid binding, capsid targeting, virus inhibitor,
- MeSH
- antivirové látky chemie farmakologie MeSH
- infekce RNA viry farmakoterapie virologie MeSH
- lidé MeSH
- replikace viru účinky léků MeSH
- RNA-viry účinky léků fyziologie MeSH
- sestavení viru účinky léků MeSH
- virové plášťové proteiny antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- virové plášťové proteiny MeSH
Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.
- Klíčová slova
- HIV-1, RNA packaging, fullerene, inhibition, nucleocapsid,
- MeSH
- fullereny metabolismus farmakologie MeSH
- genom virový účinky léků MeSH
- genové produkty gag - virus lidské imunodeficience metabolismus MeSH
- HEK293 buňky MeSH
- HIV-1 účinky léků genetika metabolismus fyziologie MeSH
- látky proti HIV metabolismus farmakologie MeSH
- lidé MeSH
- nukleokapsida - proteiny metabolismus MeSH
- reverzní transkripce MeSH
- RNA virová metabolismus MeSH
- svlékání virového obalu účinky léků MeSH
- vazba proteinů MeSH
- virion metabolismus MeSH
- zabalení virového genomu účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullereny MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- látky proti HIV MeSH
- nukleokapsida - proteiny MeSH
- RNA virová MeSH
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.
- Klíčová slova
- CAH *, IP6 *, M-PMV *, MLV *, RSV *, SP domain *, assembly *, hexamer *, immature *, polyanion *,
- MeSH
- Alpharetrovirus fyziologie MeSH
- Betaretrovirus fyziologie MeSH
- buněčná membrána chemie metabolismus MeSH
- Gammaretrovirus fyziologie MeSH
- genové produkty gag chemie metabolismus MeSH
- interakce hostitele a patogenu * MeSH
- kultivované buňky MeSH
- polyelektrolyty chemie metabolismus MeSH
- Retroviridae fyziologie ultrastruktura MeSH
- sestavení viru * MeSH
- virion MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty gag MeSH
- polyanions MeSH Prohlížeč
- polyelektrolyty MeSH
Proper assembly and disassembly of both immature and mature HIV-1 hexameric lattices are critical for successful viral replication. These processes are facilitated by several host-cell factors, one of which is myo-inositol hexaphosphate (IP6). IP6 participates in the proper assembly of Gag into immature hexameric lattices and is incorporated into HIV-1 particles. Following maturation, IP6 is also likely to participate in stabilizing capsid protein-mediated mature hexameric lattices. Although a structural-functional analysis of the importance of IP6 in the HIV-1 life cycle has been reported, the effect of IP6 has not yet been quantified. Using two in vitro methods, we quantified the effect of IP6 on the assembly of immature-like HIV-1 particles, as well as its stabilizing effect during disassembly of mature-like particles connected with uncoating. We analyzed a broad range of molar ratios of protein hexamers to IP6 molecules during assembly and disassembly. The specificity of the IP6-facilitated effect on HIV-1 particle assembly and stability was verified by K290A, K359A, and R18A mutants. In addition to IP6, we also tested other polyanions as potential assembly cofactors or stabilizers of viral particles.IMPORTANCE Various host cell factors facilitate critical steps in the HIV-1 replication cycle. One of these factors is myo-inositol hexaphosphate (IP6), which contributes to assembly of HIV-1 immature particles and helps maintain the well-balanced metastability of the core in the mature infectious virus. Using a combination of two in vitro methods to monitor assembly of immature HIV-1 particles and disassembly of the mature core-like structure, we quantified the contribution of IP6 and other small polyanion molecules to these essential steps in the viral life cycle. Our data showed that IP6 contributes substantially to increasing the assembly of HIV-1 immature particles. Additionally, our analysis confirmed the important role of two HIV-1 capsid lysine residues involved in interactions with IP6. We found that myo-inositol hexasulphate also stabilized the HIV-1 mature particles in a concentration-dependent manner, indicating that targeting this group of small molecules may have therapeutic potential.
- Klíčová slova
- HIV-1, IP6, assembly, capsid, immature, mature, polyanion,
- MeSH
- genové produkty gag - virus lidské imunodeficience chemie genetika metabolismus MeSH
- HIV-1 chemie genetika MeSH
- missense mutace MeSH
- polyelektrolyty MeSH
- polymery chemie MeSH
- sestavení viru * MeSH
- substituce aminokyselin MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty gag - virus lidské imunodeficience MeSH
- polyanions MeSH Prohlížeč
- polyelektrolyty MeSH
- polymery MeSH
A major structural retroviral protein, capsid protein (CA), is able to oligomerize into two different hexameric lattices, which makes this protein a key component for both the early and late stages of HIV-1 replication. During the late stage, the CA protein, as part of the Gag polyprotein precursor, facilitates protein-protein interactions that lead to the assembly of immature particles. Following protease activation and Gag polyprotein processing, CA also drives the assembly of the mature viral core. In the early stage of infection, the role of the CA protein is distinct. It controls the disassembly of the mature CA hexameric lattice i.e., uncoating, which is critical for the reverse transcription of the single-stranded RNA genome into double stranded DNA. These properties make CA a very attractive target for small molecule functioning as inhibitors of HIV-1 particle assembly and/or disassembly. Of these, inhibitors containing the PF74 scaffold have been extensively studied. In this study, we reported a series of modifications of the PF74 molecule and its characterization through a combination of biochemical and structural approaches. Our data supported the hypothesis that PF74 stabilizes the mature HIV-1 CA hexameric lattice. We identified derivatives with a higher in vitro stabilization activity in comparison to the original PF74 molecule.
- Klíčová slova
- HIV-1 CA inhibitor, PF74 derivatives, disassembly, uncoating,
- MeSH
- HIV-1 účinky léků MeSH
- indoly chemická syntéza chemie farmakologie MeSH
- látky proti HIV chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- racionální návrh léčiv MeSH
- rekombinantní proteiny MeSH
- sestavení viru účinky léků MeSH
- techniky syntetické chemie MeSH
- virion účinky léků ultrastruktura MeSH
- virové plášťové proteiny antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indoly MeSH
- látky proti HIV MeSH
- rekombinantní proteiny MeSH
- virové plášťové proteiny MeSH
Shortly after entering the cell, HIV-1 copies its genomic RNA into double-stranded DNA in a process known as reverse transcription. This process starts inside a core consisting of an enclosed lattice of capsid proteins that protect the viral RNA from cytosolic sensors and degradation pathways. To accomplish reverse transcription and integrate cDNA into the host cell genome, the capsid shell needs to be disassembled, or uncoated. Premature or delayed uncoating attenuates reverse transcription and blocks HIV-1 infectivity. Small molecules that bind to the capsid lattice of the HIV-1 core and either destabilize or stabilize its structure could thus function as effective HIV-1 inhibitors. To screen for such compounds, we modified our recently developed FAITH assay to allow direct assessment of the stability of in vitro preassembled HIV-1 capsid-nucleocapsid (CANC) tubular particles. This new assay is a high-throughput fluorescence method based on measuring the amount of nucleic acid released from CANC complexes under disassembly conditions. The amount of disassembled CANC particles and released nucleic acid is proportional to the fluorescence signal, from which the relative percentage of CANC stability can be calculated. We consider our assay a potentially powerful tool for in vitro screening for compounds that alter HIV disassembly.
- MeSH
- HIV infekce farmakoterapie MeSH
- HIV-1 účinky léků fyziologie MeSH
- látky proti HIV chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- nukleokapsida analýza účinky léků MeSH
- proteiny virového jádra chemie genetika metabolismus MeSH
- RNA virová genetika MeSH
- rychlé screeningové testy MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- svlékání virového obalu účinky léků genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky proti HIV MeSH
- proteiny virového jádra MeSH
- RNA virová MeSH
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
- Klíčová slova
- Assay, Assembly, Cell-based, Entry, High-throughput screening, In vitro, Inhibitor, Method, Replication, Virus,
- MeSH
- antivirové látky farmakologie MeSH
- fyziologie virů účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- interakce hostitele a patogenu účinky léků MeSH
- internalizace viru účinky léků MeSH
- kapsida účinky léků metabolismus MeSH
- lidé MeSH
- preklinické hodnocení léčiv metody MeSH
- replikace viru účinky léků MeSH
- rychlé screeningové testy metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- inhibitory enzymů MeSH
The cellular role of breast carcinoma-associated protein (BCA3), also known as A-kinase-interacting protein 1 (AKIP-1), is not fully understood. Recently, we reported that full-length, but not C-terminally truncated, BCA3 is incorporated into virions of Mason-Pfizer monkey virus, and that BCA3 enhances HIV-1 protease-induced apoptosis. In the present study, we report that BCA3 is associated with purified and subtilisin-treated HIV particles. Using a combination of immune-based methods and confocal microscopy, we show that the C-terminus of BCA3 is required for packaging into HIV-1 particles. However, we were unable to identify an HIV-1 binding domain for BCA3, and we did not observe any effect of incorporated BCA3 on HIV-1 infectivity. Interestingly, the BCA3 C-terminus was previously identified as a binding site for the catalytic subunit of protein kinase A (PKAc), a cellular protein that is specifically packaged into HIV-1 particles. Based on our analysis of PKAc⁻BCA3 interactions, we suggest that BCA3 incorporation into HIV-1 particles is mediated by its ability to interact with PKAc.
- Klíčová slova
- AKIP-1, BCA3, HIV-1, M-PMV, PKAc, virus incorporation,
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- HIV-1 metabolismus fyziologie MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- replikace viru genetika MeSH
- sestavení viru MeSH
- vazba proteinů MeSH
- virion metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- AKIP1 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- proteinkinasy závislé na cyklickém AMP MeSH