Nejvíce citovaný článek - PubMed ID 26807521
Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples
The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. KEY POINTS: • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement.
- Klíčová slova
- Agriculture and food industry, Bio-chemiluminescence, Biosensors, Carbon nanotubes, Diseases, Environmental application, Graphene, Pollution,
- MeSH
- biosenzitivní techniky * MeSH
- grafit * MeSH
- luminiscence MeSH
- nanotrubičky uhlíkové * MeSH
- povrchová plasmonová rezonance MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- nanotrubičky uhlíkové * MeSH
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
- Klíčová slova
- antifouling polymer brushes, cell mechanotransduction, cell signaling, functional biointerfaces, surface modification, zwitterionic material,
- MeSH
- akrylamidy chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- bioznečištění prevence a kontrola MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- protoonkogenní proteiny c-yes metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- biokompatibilní potahované materiály MeSH
- oligopeptidy MeSH
- protoonkogenní proteiny c-yes MeSH
- YES1 protein, human MeSH Prohlížeč
- zwitterion carboxybetaine acrylamide MeSH Prohlížeč