Nejvíce citovaný článek - PubMed ID 27171135
Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity
OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.
- Klíčová slova
- Biased signaling, IGF-1, IGF1 receptor, IGF1 receptor inhibition, Insulin, Iridoviridae, Viral insulin/IGF-1 like peptides (VILPs),
- MeSH
- elektronová kryomikroskopie MeSH
- exprese genu MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosforylace MeSH
- insulinu podobný růstový faktor I * genetika metabolismus MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- myši MeSH
- protein - isoformy metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- receptor IGF typ 1 * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositol-3-kinasy MeSH
- IGF1R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I * MeSH
- inzulin MeSH
- protein - isoformy MeSH
- protoonkogenní proteiny c-akt MeSH
- receptor IGF typ 1 * MeSH
The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.
- Klíčová slova
- mutagenesis in vitro, peptide hormone, receptor modification, receptor tyrosine kinase, structure–function,
- MeSH
- elektronová kryomikroskopie MeSH
- insulinu podobný růstový faktor I genetika chemie metabolismus MeSH
- inzulin metabolismus MeSH
- ligandy MeSH
- receptor IGF typ 1 * genetika chemie metabolismus MeSH
- receptor inzulinu * genetika chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- ligandy MeSH
- receptor IGF typ 1 * MeSH
- receptor inzulinu * MeSH
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
- Klíčová slova
- antagonism, dicarba, disulfide mimetics, insulin mimetic peptide, insulin receptor, staple, triazole,
- MeSH
- disulfidy chemie MeSH
- inzulin * metabolismus MeSH
- peptidy chemie MeSH
- receptor inzulinu * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- disulfidy MeSH
- inzulin * MeSH
- peptidy MeSH
- receptor inzulinu * MeSH
OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.
- Klíčová slova
- Adipose tissue, GLUT4, Glucose metabolism, IGF-1, Insulin, VILPs, Viral insulin, Viral mimicry,
- MeSH
- bílá tuková tkáň metabolismus MeSH
- buněčné linie MeSH
- CD antigeny MeSH
- fosforylace MeSH
- glukosa metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- inzulin genetika metabolismus MeSH
- inzuliny metabolismus MeSH
- Iridovirus genetika MeSH
- iridoviry genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptor IGF typ 1 genetika metabolismus MeSH
- receptor inzulinu metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CD antigeny MeSH
- glukosa MeSH
- IGF1 protein, human MeSH Prohlížeč
- IGF1R protein, human MeSH Prohlížeč
- Igf1r protein, mouse MeSH Prohlížeč
- INSR protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- inzuliny MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation. It was also proposed that these functions could be mediated by the receptor for IGF2 (IGF2R). Nevertheless, little is known about the mechanism of signal transduction through this receptor. Here we produced His-tagged domain 11 (D11), an IGF2-binding element of IGF2R; we immobilized it on the solid support through a well-defined sandwich, consisting of neutravidin, biotin and synthetic anti-His-tag antibodies. Next, we prepared specifically radiolabeled [125I]-monoiodotyrosyl-Tyr2-IGF2 and optimized a sensitive and robust competitive radioligand binding assay for determination of the nanomolar binding affinities of hormones for D11 of IGF2. The assay will be helpful for the characterization of new IGF2 mutants to study the functions of IGF2R and the development of new compounds for the treatment of neurological disorders.
- MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- insulinu podobný růstový faktor II metabolismus MeSH
- kompetitivní vazba MeSH
- kultivované buňky MeSH
- lidé MeSH
- radioizotopy jodu MeSH
- radioligandová zkouška metody MeSH
- receptor IGF typ 2 imunologie ultrastruktura MeSH
- signální transdukce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IGF1 protein, human MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- IGF2R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- insulinu podobný růstový faktor II MeSH
- Iodine-125 MeSH Prohlížeč
- radioizotopy jodu MeSH
- receptor IGF typ 2 MeSH
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
- Klíčová slova
- NMR structure, complex, hormone analog, insulin, insulin-like growth factor (IGF), molecular dynamics, mutagenesis, peptide hormone, receptor autophosphorylation, receptor binding, receptor tyrosine kinase, structural biology, structure-function,
- MeSH
- insulinu podobný růstový faktor I chemie genetika MeSH
- insulinu podobný růstový faktor II chemie genetika MeSH
- inzulin analogy a deriváty chemická syntéza chemie genetika MeSH
- lidé MeSH
- mnohočetné abnormality genetika MeSH
- mutace genetika MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- poruchy růstu genetika MeSH
- proteinové domény genetika MeSH
- receptor IGF typ 1 chemie genetika MeSH
- receptor inzulinu chemie genetika MeSH
- sekvence aminokyselin genetika MeSH
- vazba proteinů genetika MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IGF1R protein, human MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- insulinu podobný růstový faktor II MeSH
- inzulin MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
- Klíčová slova
- Site 1, binding, insulin, insulin receptor, insulin-like growth factor (IGF), kinetics, protein design, structure-function,
- MeSH
- insulinu podobný růstový faktor I chemie genetika metabolismus MeSH
- inzulin agonisté metabolismus MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu chemie genetika metabolismus MeSH
- receptory somatomedinů chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IGF1R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
- receptory somatomedinů MeSH
A significant drawback of the exogenous administration of insulin to diabetics is the non-physiological profile of insulin action resulting in the insufficient suppression of hepatic glucose production, which is the main contributing factor to diabetic hyperglycemia under fasting conditions and the basis of the challenge to restore a more physiological glucose profile in diabetes. The insulin receptor (IR) exists in two alternatively spliced variants, IR-A and IR-B, with different tissue distribution. While peripheral tissues contain different proportions of both isoforms, hepatic cells almost exclusively contain IR-B. In this respect, IR-B-selective insulin analogs would be of great interest for their potential to restore more natural metabolic homeostasis in diabetes. Recent advances in the structural biology of insulin and IR have provided new clues for understanding the interaction of both proteins. This article discusses and offers some structural perspectives for the design of specific insulin analogs with a preferential binding to IR-B.
- Klíčová slova
- CT-peptide, IR-A, IR-B, binding affinity, exon 11, insulin analog, insulin receptor isoform,
- Publikační typ
- časopisecké články MeSH
Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.
- Klíčová slova
- insulin, insulin receptor, insulin-like growth factor (IGF), nuclear magnetic resonance (NMR), structural biology, structure-function,
- MeSH
- CD antigeny chemie genetika metabolismus MeSH
- insulinu podobný růstový faktor II chemie genetika metabolismus MeSH
- lidé MeSH
- missense mutace MeSH
- protein - isoformy chemie genetika metabolismus MeSH
- proteinové domény MeSH
- receptor IGF typ 1 chemie genetika metabolismus MeSH
- receptor inzulinu chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CD antigeny MeSH
- IGF2 protein, human MeSH Prohlížeč
- INSR protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor II MeSH
- protein - isoformy MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
- rekombinantní proteiny MeSH