Nejvíce citovaný článek - PubMed ID 27590927
CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation
Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
- Klíčová slova
- FGAR, PFAS deficiency, formylglycinamide riboside, metabolic disorder, purine de novo synthesis, purinosome,
- MeSH
- lidé MeSH
- ligasy tvořící vazby C-N s glutaminem jako amidovým donorem * genetika nedostatek metabolismus MeSH
- mladý dospělý MeSH
- mutace MeSH
- poruchy metabolismu purinů a pyrimidinů * genetika MeSH
- puriny * biosyntéza MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- ligasy tvořící vazby C-N s glutaminem jako amidovým donorem * MeSH
- phosphoribosylformylglycinamidine synthetase MeSH Prohlížeč
- purine MeSH Prohlížeč
- puriny * MeSH
De novo synthesis of purines (DNPS) is a biochemical pathway that provides the purine bases for synthesis of essential biomolecules such as nucleic acids, energy transfer molecules, signaling molecules and various cofactors. Inborn errors of DNPS enzymes present with a wide spectrum of neurodevelopmental and neuromuscular abnormalities and accumulation of characteristic metabolic intermediates of the DNPS in body fluids and tissues. In this study, we present the second case of PAICS deficiency due to bi-allelic variants of PAICS gene encoding for a missense p.Ser179Pro and truncated p.Arg403Ter forms of the PAICS proteins. Two affected individuals were born at term after an uncomplicated pregnancy and delivery and presented later in life with progressive cerebral atrophy, epileptic encephalopathy, psychomotor retardation, and retinopathy. Plasma and urinary concentrations of dephosphorylated substrates of PAICS, AIr and CAIr were elevated, though they remained undetectable in skin fibroblasts. Both variants affect structural domains in SAICARs catalytic site and the oligomerization interface. In silico modeling predicted negative effects on PAICS oligomerization, enzyme stability and enzymatic activity. Consistent with these findings, affected skin fibroblasts were devoid of PAICS protein and enzyme activity. This was accompanied by alterations in contents of other DNPS proteins, which had co-localized in granular structures that are characteristic of purinosome formation. Our observation expands the clinical spectrum of PAICS deficiency from recurrent abortions and fatal neonatal form to later onset neurodevelopmental disorders. The rarity of this condition may be based on poor clinical recognition and limited access to specialized laboratory tests diagnostic for PAICS deficiency.
- Publikační typ
- časopisecké články MeSH
Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.
- Klíčová slova
- ADSL, AICAR, AIR, ATIC, FGAR, PAICS, PFAS, SAICAR, cytotoxicity, purine synthesis,
- Publikační typ
- časopisecké články MeSH
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.
- Klíčová slova
- HeLa cells, mass spectrometry, metabolomics, purine de novo synthesis, rare metabolic disorders,
- Publikační typ
- časopisecké články MeSH
Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.
- Klíčová slova
- ADSL, ADSLD, DNA damage, SAICAR, cell biology, chicken, cilia, developmental biology, human, microcephaly, zebrafish,
- MeSH
- adenylsukcinátlyasa nedostatek metabolismus MeSH
- aminoimidazolkarboxamid analogy a deriváty metabolismus MeSH
- autistická porucha metabolismus MeSH
- buněčné linie MeSH
- buněčný cyklus MeSH
- ciliopatie metabolismus MeSH
- dánio pruhované metabolismus MeSH
- fenotyp MeSH
- fosfoproteiny metabolismus MeSH
- kur domácí metabolismus MeSH
- lidé MeSH
- mikrocefalie metabolismus MeSH
- neurogeneze * MeSH
- poruchy autistického spektra metabolismus MeSH
- poruchy metabolismu purinů a pyrimidinů metabolismus MeSH
- poškození DNA MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- puriny metabolismus MeSH
- ribonukleotidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adenylsukcinátlyasa MeSH
- aminoimidazolkarboxamid MeSH
- CCP110 protein, human MeSH Prohlížeč
- fosfoproteiny MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny buněčného cyklu MeSH
- purine MeSH Prohlížeč
- puriny MeSH
- ribonukleotidy MeSH
- SAICAR MeSH Prohlížeč
BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
- Klíčová slova
- Glutamine antagonist, LC-MS., biomarker, cancer, formylglycinamide ribonucleotide, formylglycinamidine ribonucleotide, purine synthesis,
- MeSH
- biomarkery farmakologické analýza metabolismus MeSH
- chromatografie kapalinová metody MeSH
- glutamin antagonisté a inhibitory MeSH
- glycin analogy a deriváty analýza metabolismus MeSH
- hmotnostní spektrometrie metody MeSH
- metabolické sítě a dráhy účinky léků MeSH
- myši MeSH
- nádorové biomarkery analýza metabolismus MeSH
- nádory * farmakoterapie metabolismus MeSH
- ribonukleotidy * analýza metabolismus MeSH
- vyvíjení léků metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biomarkery farmakologické MeSH
- glutamin MeSH
- glycin MeSH
- nádorové biomarkery MeSH
- phosphoribosyl-N-formylglycineamide MeSH Prohlížeč
- ribonukleotidy * MeSH
In humans, GART [phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) / phosphoribosylglycinamide synthetase (EC 6.3.4.13) / phosphoribosylaminoimidazole synthetase (EC 6.3.3.1)] is a trifunctional protein which catalyzes the second, third, and fifth reactions of the ten step de novo purine synthesis (DNPS) pathway. The second step of DNPS is conversion of phosphoribosylamine (5-PRA) to glycineamide ribonucleotide (GAR). 5-PRA is extremely unstable under physiological conditions and is unlikely to accumulate in the absence of GART activity. Recently, a HeLa cell line null mutant for GART was constructed via CRISPR-Cas9 mutagenesis. This cell line, crGART, is an important cellular model of DNPS inactivation that does not accumulate DNPS pathway intermediates. In the current study, we characterized the crGART versus HeLa transcriptomes in purine-supplemented and purine-depleted growth conditions. We observed multiple transcriptome changes and discuss pathways and ontologies particularly relevant to Alzheimer disease and Down syndrome. We selected the Cluster of Differentiation (CD36) gene for initial analysis based on its elevated expression in crGART versus HeLa as well as its high basal expression, high log2 value, and minimal P-value.
- MeSH
- GAR-transformylasa metabolismus genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- metabolom * MeSH
- puriny * metabolismus biosyntéza MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GAR-transformylasa MeSH
- purine MeSH Prohlížeč
- puriny * MeSH
In de novo purine biosynthesis (DNPS), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (EC 2.1.2.3)/inosine monophosphate cyclohydrolase (EC 3.5.4.10) (ATIC) catalyzes the last two reactions of the pathway: conversion of 5-aminoimidazole-4-carboxamide ribonucleotide [aka Z-nucleotide monophosphate (ZMP)] to 5-formamido-4-imidazolecarboxamide ribonucleotide (FAICAR) then to inosine monophosphate (IMP). Mutations in ATIC cause an untreatable and devastating inborn error of metabolism in humans. ZMP is an adenosine monophosphate (AMP) mimetic and a known activator of AMP-activated protein kinase (AMPK). Recently, a HeLa cell line null mutant for ATIC was constructed via CRISPR-Cas9 mutagenesis. This mutant, crATIC, accumulates ZMP during purine starvation. Given that the mutant can accumulate ZMP in the absence of treatment with exogenous compounds, crATIC is likely an important cellular model of DNPS inactivation and ZMP accumulation. In the current study, we characterize the crATIC transcriptome versus the HeLa transcriptome in purine-supplemented and purine-depleted growth conditions. We report and discuss transcriptome changes with particular relevance to Alzheimer's disease and in genes relevant to lipid and fatty acid synthesis, neurodevelopment, embryogenesis, cell cycle maintenance and progression, extracellular matrix, immune function, TGFβ and other cellular processes.
- Klíčová slova
- 5-aminoimidazole-4-carboxamide ribonucleoside, (AICAr), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase, (ATIC), 5-aminoimidazole-4-carboxamide ribonucleotide, (ZMP), 5-formamido-4-imidazolecarboxamide ribonucleotide, (FAICAR), AICA-ribosiduria, AMP-activated protein kinase, (AMPK), Alzheimer's disease, Development, Purine synthesis, RNA-seq, Tuberous Sclerosis Complex 1 and 2, (TSC1 and TSC2), adenine phosphoribosyltransferase, (APRT), adenosine monophosphate, (AMP), adenosine triphosphate, (ATP), adenylosuccinate lyase, (ADSL), arachidonic acid, (AA), cyclooxygenase, (COX), cytochrome, P450 (CYP), cytosolic phospholipase A2, (cPLA2), de novo purine synthesis, (DNPS), differentially expressed gene, (DEG), false discovery rate, (FDR), fatty acid amide hydrolase, (FAAH), fetal calf macroserum, (FCM), fetal calf serum, (FCS), fragments per kilobase of exon per million reads mapped, (FPKM), gene ontology, (GO), guanosine monophosphate, (GMP), inosine monophosphate, (IMP), interferon, (INF), lipoxygenase, (LOX), mammalian Target of Rapamycin, (mTOR), minus adenine crATIC to minus adenine WT comparison, (MM), phospholipase, (PLA), phosphoribosyl pyrophosphate, (PRPP), phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase, (PAICS), plus adenine crATIC to plus adenine WT comparison, (PP), xanthine monophosphate, (XMP),
- Publikační typ
- časopisecké články MeSH
Adenylosuccinate lyase (ADSL) catalyzes two steps in de novo purine synthesis (DNPS). Mutations in ADSL can result in inborn errors of metabolism characterized by developmental delay and disorder phenotypes, with no effective treatment options. Recently, SAICAR, a metabolic substrate of ADSL, has been found to have alternative roles in the cell, complicating the role of ADSL. crADSL, a CRISPR KO of ADSL in HeLa cells, was constructed to investigate DNPS and ADSL in a human cell line. Here we employ this cell line in an RNA-seq analysis to initially investigate the effect of DNPS and ADSL deficiency on the transcriptome as a first step in establishing a cellular model of ADSL deficiency. We report transcriptome changes in genes relevant to development, vascular development, muscle, and cancer biology, which provide interesting avenues for future research.
- Klíčová slova
- Adenylosuccinate lyase, Purine synthesis, RNA-seq, Transcriptome, adenosine monophosphate, (AMP), adenylosuccinate lyase, (ADSL), aminoimidazole carboxamide ribonucleotide, (AICAR), de novo purine synthesis, (DNPS), differentially expressed gene, (DEG), false discovery rate, (FDR), fetal calf macroserum, (FCM), fragments per kilobase of exon per million reads mapped, (FPKM), gene ontology, (GO), guanosine monophosphate, (GMP), minus adenine crADSL to minus adenine WT comparison, (MM), phosphoribosyl pyrophosphate, (PRPP), phosphoribosylaminoimidazolesuccinocarboxamide, (SAICAR), plus adenine crADSL to plus adenine WT comparison, (PP), succinyladenosine monophosphate, (SAMP),
- Publikační typ
- časopisecké články MeSH
Purines are essential molecules for all forms of life. In addition to constituting a backbone of DNA and RNA, purines play roles in many metabolic pathways, such as energy utilization, regulation of enzyme activity, and cell signaling. The supply of purines is provided by two pathways: the salvage pathway and de novo synthesis. Although purine de novo synthesis (PDNS) activity varies during the cell cycle, this pathway represents an important source of purines, especially for rapidly dividing cells. A method for the detailed study of PDNS is lacking for analytical reasons (sensitivity) and because of the commercial unavailability of the compounds. The aim was to fully describe the mass spectrometric fragmentation behavior of newly synthesized PDNS-related metabolites and develop an analytical method. Except for four initial ribotide PDNS intermediates that preferentially lost water or phosphate or cleaved the forming base of the purine ring, all the other metabolites studied cleaved the glycosidic bond in the first fragmentation stage. Fragmentation was possible in the third to sixth stages. A liquid chromatography-high-resolution mass spectrometric method was developed and applied in the analysis of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual enzymatic steps of PDNS and the salvage pathway. The identities of the newly synthesized intermediates of PDNS were confirmed by comparing the fragmentation patterns of the synthesized metabolites with those produced by cells (formed under pathological conditions of known and theoretically possible defects of PDNS). The use of stable isotope incorporation allowed the confirmation of fragmentation mechanisms and provided data for future fluxomic experiments. This method may find uses in the diagnosis of PDNS disorders, the investigation of purinosome formation, cancer research, enzyme inhibition studies, and other applications.
- MeSH
- chromatografie kapalinová MeSH
- CRISPR-Cas systémy MeSH
- DNA biosyntéza chemie MeSH
- editace genu MeSH
- HeLa buňky MeSH
- lidé MeSH
- puriny biosyntéza chemie MeSH
- RNA biosyntéza chemie MeSH
- tandemová hmotnostní spektrometrie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- purine MeSH Prohlížeč
- puriny MeSH
- RNA MeSH