Nejvíce citovaný článek - PubMed ID 27773568
Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.
- Klíčová slova
- Arabidopsis, cell polarity, lateral diffusion, plant development, polar auxin transport, positive feedback, protein phosphorylation,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- biologický transport MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové MeSH
- membránové transportní proteiny genetika MeSH
- polarita buněk MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné buňky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- proteiny huseníčku * MeSH
Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- heterocyklické sloučeniny tricyklické metabolismus MeSH
- hrách setý genetika metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- laktony metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GR24 strigolactone MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické MeSH
- kyseliny indoloctové MeSH
- laktony MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
- Klíčová slova
- Arabidopsis thaliana, PIN1, TIR1/AFB, auxin, auxin canalization, cell polarity,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- F-box proteiny * genetika MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- F-box proteiny * MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH
- TIR1 protein, Arabidopsis MeSH Prohlížeč
Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.
- MeSH
- ADP-ribosylační faktory metabolismus MeSH
- Arabidopsis účinky léků metabolismus MeSH
- biologický transport účinky léků MeSH
- brefeldin A farmakologie MeSH
- buněčná membrána účinky léků metabolismus MeSH
- genetická epistáze účinky léků MeSH
- GTP-fosfohydrolasy metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku metabolismus MeSH
- proteiny přenášející fosfolipidy metabolismus MeSH
- tabák metabolismus MeSH
- trans-Golgiho síť účinky léků metabolismus MeSH
- vazba proteinů účinky léků MeSH
- výměnné faktory guaninnukleotidů metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADP-ribosylační faktory MeSH
- brefeldin A MeSH
- GTP-fosfohydrolasy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny přenášející fosfolipidy MeSH
- výměnné faktory guaninnukleotidů MeSH
The plant-specific proteins named PIN-FORMED (PIN) efflux carriers facilitate the direction of auxin flow and thus play a vital role in the establishment of local auxin maxima within plant tissues that subsequently guide plant ontogenesis. They are membrane integral proteins with two hydrophobic regions consisting of alpha-helices linked with a hydrophilic loop, which is usually longer for the plasma membrane-localized PINs. The hydrophilic loop harbors molecular cues important for the subcellular localization and thus auxin efflux function of those transporters. The three-dimensional structure of PIN has not been solved yet. However, there are scattered but substantial data concerning the functional characterization of amino acid strings that constitute these carriers. These sequences include motifs vital for vesicular trafficking, residues regulating membrane diffusion, cellular polar localization, and activity of PINs. Here, we summarize those bits of information striving to provide a reference to structural motifs that have been investigated experimentally hoping to stimulate the efforts toward unraveling of PIN structure-function connections.
- Klíčová slova
- PIN efflux carriers, auxin transport, protein domains, sequence motifs, subcellular trafficking,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.
- MeSH
- Arabidopsis účinky léků metabolismus MeSH
- biologický transport účinky léků MeSH
- buněčná membrána účinky léků metabolismus MeSH
- endocytóza * účinky léků MeSH
- fenotyp MeSH
- fenylacetáty farmakologie MeSH
- gravitropismus účinky léků MeSH
- hypokotyl účinky léků růst a vývoj MeSH
- kořeny rostlin účinky léků růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- signální transdukce MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenylacetáty MeSH
- kyseliny indoloctové MeSH
- phenylacetic acid MeSH Prohlížeč
- pinstatic acid MeSH Prohlížeč
- proteiny huseníčku MeSH
The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.
- MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- brefeldin A farmakologie MeSH
- buněčná membrána účinky léků metabolismus MeSH
- chromony chemie farmakologie MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- endocytóza účinky léků MeSH
- geneticky modifikované rostliny MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- mutace MeSH
- proteinové domény MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků metabolismus MeSH
- simulace molekulového dockingu MeSH
- transkripční faktory genetika metabolismus MeSH
- transport proteinů účinky léků MeSH
- výměnné faktory guaninnukleotidů chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ARF1 protein, Arabidopsis MeSH Prohlížeč
- brefeldin A MeSH
- chromony MeSH
- DNA vazebné proteiny MeSH
- GNL1 protein, Arabidopsis MeSH Prohlížeč
- GNOM protein, Arabidopsis MeSH Prohlížeč
- membránové glykoproteiny MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SEC12 protein, S cerevisiae MeSH Prohlížeč
- transkripční faktory MeSH
- výměnné faktory guaninnukleotidů MeSH
Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals.
- MeSH
- Arabidopsis účinky léků fyziologie MeSH
- fosforylace MeSH
- gravitropismus * MeSH
- kořeny rostlin účinky léků fyziologie MeSH
- kyseliny indoloctové farmakologie MeSH
- percepce tíhy MeSH
- polarita buněk * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- PIN3 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- geneticky modifikované rostliny MeSH
- genové regulační sítě * účinky léků MeSH
- kořeny rostlin účinky léků genetika růst a vývoj metabolismus MeSH
- kyseliny indoloctové metabolismus farmakologie MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- mikročipová analýza MeSH
- polarita buněk * genetika MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory fyziologie MeSH
- zpětná vazba fyziologická účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- transkripční faktory MeSH
- WRKY23 protein, Arabidopsis MeSH Prohlížeč