Most cited article - PubMed ID 27778219
Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency
Cystathionine β-synthase (CBS) deficiency (classical homocystinuria) has a wide range of severity. Mildly affected patients typically present as adults with thromboembolism and respond to treatment with pyridoxine. Severely affected patients usually present during childhood with learning difficulties, ectopia lentis and skeletal abnormalities; they are pyridoxine non-responders (NR) or partial responders (PR) and require treatment with a low-methionine diet and/or betaine. The European network and registry for Homocystinurias and methylation Defects (E-HOD) has published management guidelines for CBS deficiency and recommended keeping plasma total homocysteine (tHcy) concentrations below 100 μmol/L. We have now analysed data from 311 patients in the registry to see how closely treatment follows the guidelines. Pyridoxine-responsive patients generally achieved tHcy concentrations below 50 μmol/L, but many NRs and PRs had a mean tHcy considerably above 100 μmol/L. Most NRs were managed with betaine and a special diet. This usually involved severe protein restriction and a methionine-free amino acid mixture, but some patients had a natural protein intake substantially above the WHO safe minimum. Work is needed on the methionine content of dietary protein as estimates vary widely. Contrary to the guidelines, most NRs were on pyridoxine, sometimes at dangerously high doses. tHcy concentrations were similar in groups prescribed high or low betaine doses and natural protein intakes. High tHcy levels were probably often due to poor compliance. Comparing time-to-event graphs for NR patients detected by newborn screening and those ascertained clinically showed that treatment could prevent thromboembolism (risk ratio 0.073) and lens dislocation (risk ratio 0.069).
- Keywords
- betaine, homocystinuria, methionine, newborn screening, protein restriction, pyridoxine,
- MeSH
- Betaine therapeutic use MeSH
- Cystathionine beta-Synthase * deficiency genetics MeSH
- Child MeSH
- Adult MeSH
- Homocysteine blood MeSH
- Homocystinuria * diet therapy drug therapy diagnosis blood MeSH
- Infant MeSH
- Humans MeSH
- Methionine MeSH
- Adolescent MeSH
- Young Adult MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Pyridoxine * therapeutic use MeSH
- Registries MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Betaine MeSH
- Cystathionine beta-Synthase * MeSH
- Homocysteine MeSH
- Methionine MeSH
- Pyridoxine * MeSH
BACKGROUND: Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
- Keywords
- Cystathionine beta-synthase, Homocystinuria, Metabolomics, Methionine restriction, Proteomics,
- MeSH
- Cystathionine beta-Synthase * metabolism deficiency genetics MeSH
- Homocystinuria * metabolism genetics MeSH
- Liver * metabolism MeSH
- Lipidomics methods MeSH
- Metabolomics * methods MeSH
- Mitochondria metabolism MeSH
- Disease Models, Animal * MeSH
- Mice, Transgenic * MeSH
- Mice MeSH
- Proteome metabolism MeSH
- Proteomics * methods MeSH
- Sphingolipids * metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cystathionine beta-Synthase * MeSH
- Proteome MeSH
- Sphingolipids * MeSH
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
- Keywords
- chaperones, cystathionine beta-synthase, enzyme therapy, gene therapy, homocystinuria, pegtibatinase, proteasome inhibitors,
- MeSH
- Cystathionine beta-Synthase genetics metabolism MeSH
- Homocystinuria * drug therapy genetics metabolism MeSH
- Quality of Life MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Thromboembolism * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cystathionine beta-Synthase MeSH
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.
- Keywords
- Cystathionine β-synthase, Cystathionine γ-lyase, Molybdenum cofactor, Persulfide dioxygenase, Sulfide:quinone oxidoreductase, Sulfite oxidase,
- MeSH
- Cysteine MeSH
- Homeostasis MeSH
- Homocysteine MeSH
- Humans MeSH
- Sulfur MeSH
- Hydrogen Sulfide * metabolism MeSH
- Sulfides metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cysteine MeSH
- Homocysteine MeSH
- Sulfur MeSH
- Hydrogen Sulfide * MeSH
- Sulfides MeSH
Cystathionine β-synthase (CBS) deficiency has a wide clinical spectrum, ranging from neurodevelopmental problems, lens dislocation and marfanoid features in early childhood to adult onset disease with predominantly thromboembolic complications. We have analysed clinical and laboratory data at the time of diagnosis in 328 patients with CBS deficiency from the E-HOD (European network and registry for Homocystinurias and methylation Defects) registry. We developed comprehensive criteria to classify patients into four groups of pyridoxine responsivity: non-responders (NR), partial, full and extreme responders (PR, FR and ER, respectively). All groups showed overlapping concentrations of plasma total homocysteine while pyridoxine responsiveness inversely correlated with plasma/serum methionine concentrations. The FR and ER groups had a later age of onset and diagnosis and a longer diagnostic delay than NR and PR patients. Lens dislocation was common in all groups except ER but the age of dislocation increased with increasing responsiveness. Developmental delay was commonest in the NR group while no ER patient had cognitive impairment. Thromboembolism was the commonest presenting feature in ER patients, whereas it was least likely at presentation in the NR group. This probably is due to the differences in ages at presentation: all groups had a similar number of thromboembolic events per 1000 patient-years. Clinical severity of CBS deficiency depends on the degree of pyridoxine responsiveness. Therefore, a standardised pyridoxine-responsiveness test in newly diagnosed patients and a critical review of previous assessments is indispensable to ensure adequate therapy and to prevent or reduce long-term complications.
- Keywords
- developmental delay, homocystinuria, methionine, natural history, patient registry, thromboembolism,
- MeSH
- Cystathionine beta-Synthase deficiency MeSH
- Child MeSH
- Adult MeSH
- Phenotype MeSH
- Homocystinuria diagnosis drug therapy enzymology MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Linear Models MeSH
- Methionine blood MeSH
- Adolescent MeSH
- Young Adult MeSH
- Delayed Diagnosis MeSH
- Child, Preschool MeSH
- Pyridoxine therapeutic use MeSH
- Registries MeSH
- Aged MeSH
- Severity of Illness Index MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Cystathionine beta-Synthase MeSH
- Methionine MeSH
- Pyridoxine MeSH
BACKGROUND: The main genetic causes of homocystinuria are cystathionine beta-synthase (CBS) deficiency and the remethylation defects. Many patients present in childhood but milder forms may present later in life. Some countries have newborn screening programs for the homocystinurias but these do not detect all patients. RESULTS: HCU Network Australia is one of the very few support groups for patients with homocystinurias. Here we report the results of its survey of 143 patients and caregivers from 22 countries, evaluating current diagnostic pathways and management for the homocystinurias. Most (110) of the responses related to patients with CBS deficiency. The diagnosis was made by newborn screening in 20% of patients and in 50% of the others within 1 year of the initial symptom but in 12.5% it took over 15 years. The delay was attributed mainly to ignorance of the disease. Physicians need to learn to measure homocysteine concentrations in children with neurodevelopmental problems, and in patients with heterogeneous symptoms such as thromboembolism, dislocation of the optic lens, haemolytic uraemic syndrome, and psychiatric disease. Even when the diagnosis is made, the way it is communicated is sometimes poor. Early-onset CBS deficiency usually requires a low-protein diet with amino acid supplements. More than a third of the participants reported problems with the availability or cost of treatment. Only half of the patients always took their amino acid mixture. In contrast, good adherence to the protein restriction was reported in 98% but 80% said it was hard, time-consuming and caused unhappiness. CONCLUSIONS: There is often a long delay in diagnosing the homocystinurias unless this is achieved by newborn screening; this survey also highlights problems with the availability and cost of treatment and the palatability of protein substitutes.
- Keywords
- Cystathionine beta-synthase deficiency, Delay in diagnosis, Patient reported outcome, Patient support groups, Remethylation disorders,
- MeSH
- Cystathionine beta-Synthase MeSH
- Child MeSH
- Homocystinuria * diagnosis MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Caregivers MeSH
- Patient Satisfaction MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- Cystathionine beta-Synthase MeSH
BACKGROUND: Following the broad application of new analytical methods, more and more pathophysiological processes in previously unknown diseases have been elucidated. The spectrum of clinical presentation of rare inherited metabolic diseases (IMDs) is broad and ranges from single organ involvement to multisystemic diseases. With the aim of overcoming the limited knowledge about the natural course, current diagnostic and therapeutic approaches, the project has established the first unified patient registry for IMDs that fully meets the requirements of the European Infrastructure for Rare Diseases (ERDRI). RESULTS: In collaboration with the European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), the Unified European registry for Inherited Metabolic Diseases (U-IMD) was established to collect patient data as an observational, non-interventional natural history study. Following the recommendations of the ERDRI the U-IMD registry uses common data elements to define the IMDs, report the clinical phenotype, describe the biochemical markers and to capture the drug treatment. Until today, more than 1100 IMD patients have been registered. CONCLUSION: The U-IMD registry is the first observational, non-interventional patient registry that encompasses all known IMDs. Full semantic interoperability for other registries has been achieved, as demonstrated by the use of a minimum common core data set for equivalent description of metabolic patients in U-IMD and in the patient registry of the European Rare Kidney Disease Reference Network (ERKNet). In conclusion, the U-IMD registry will contribute to a better understanding of the long-term course of IMDs and improved patients care by understanding the natural disease course and by enabling an optimization of diagnostic and therapeutic strategies.
- Keywords
- ERDRI, European infrastructure for rare diseases, European reference network for rare hereditary metabolic disorders, Inherited metabolic diseases, MetabERN, U-IMD, Unified european registry for inherited metabolic diseases,
- MeSH
- Humans MeSH
- Metabolic Diseases * genetics MeSH
- Registries MeSH
- Rare Diseases genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.
- MeSH
- Cystathionine beta-Synthase genetics metabolism MeSH
- Phenotype MeSH
- Genetic Testing methods MeSH
- Genotype MeSH
- Homocystinuria genetics MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- Saccharomyces cerevisiae Proteins genetics MeSH
- Saccharomyces cerevisiae MeSH
- Genetic Complementation Test methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cystathionine beta-Synthase MeSH
- Saccharomyces cerevisiae Proteins MeSH
BACKGROUND AND PURPOSE: Homocystinurias are rare genetic defects characterized by altered fluxes of sulfur compounds including homocysteine and cysteine. We explored whether the severely perturbed sulfur amino acid metabolism in patients with homocystinurias affects the metabolism of hydrogen sulfide. EXPERIMENTAL APPROACH: We studied 10 treated patients with a block in the conversion of homocysteine to cysteine due to cystathionine β-synthase deficiency (CBSD) and six treated patients with remethylation defects (RMD) and an enhanced flux of sulfur metabolites via transsulfuration. Control groups for CBSD and RMD patients consisted of 22 patients with phenylketonuria on a low-protein diet and of 12 healthy controls respectively. Plasma and urine concentrations of selected sulfur compounds were analysed by HPLC and LC-MS/MS. KEY RESULTS: Patients with CBSD exhibited plasma concentrations of monobromobimane-detected sulfide similar to appropriate controls. Urinary homolanthionine and thiosulfate in CBSD were increased significantly 1.9 and 3 times suggesting higher hydrogen sulfide synthesis by γ-cystathionase and detoxification respectively. Surprisingly, patients with RMD had significantly lower plasma sulfide levels (53 and 64% of controls) with lower sulfite concentrations, and higher taurine and thiosulfate levels suggesting enhanced cysteine oxidation and hydrogen sulfide catabolism respectively. CONCLUSION AND IMPLICATIONS: The results from this study suggest that severe inherited defects in sulfur amino acid metabolism may be accompanied by only moderately perturbed hydrogen sulfide metabolism and lends support to the hypothesis that enzymes in the transsulfuration pathway may not be the major contributors to the endogenous hydrogen sulfide pool. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
- MeSH
- Child MeSH
- Adult MeSH
- Homocystinuria blood metabolism urine MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Child, Preschool MeSH
- Sulfur Compounds blood metabolism urine MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sulfur Compounds MeSH
Classical homocystinuria (HCU) is the most common inherited disorder of sulfur amino acid metabolism caused by deficiency in cystathionine beta-synthase (CBS) activity and characterized by severe elevation of homocysteine in blood and tissues. Treatment with dietary methionine restriction is not optimal, and poor compliance leads to serious complications. We developed an enzyme replacement therapy (ERT) and studied its efficacy in a severe form of HCU in mouse (the I278T model). Treatment was initiated before or after the onset of clinical symptoms in an effort to prevent or reverse the phenotype. ERT substantially reduced and sustained plasma homocysteine concentration at around 100 μM and normalized plasma cysteine for up to 9 months of treatment. Biochemical balance was also restored in the liver, kidney, and brain. Furthermore, ERT corrected liver glucose and lipid metabolism. The treatment prevented or reversed facial alopecia, fragile and lean phenotype, and low bone mass. In addition, structurally defective ciliary zonules in the eyes of I278T mice contained low density and/or broken fibers, while administration of ERT from birth partially rescued the ocular phenotype. In conclusion, ERT maintained an improved metabolic pattern and ameliorated many of the clinical complications in the I278T mouse model of HCU.
- Keywords
- PEGylation, alopecia, bone density, cystathionine beta-synthase, enzyme replacement, eye defect, homocysteine, inborn error of metabolism, metabolomics, preclinical studies,
- MeSH
- Amino Acids, Sulfur blood metabolism MeSH
- Cystathionine beta-Synthase administration & dosage chemistry MeSH
- Enzyme Replacement Therapy * MeSH
- Phenotype * MeSH
- Glucose metabolism MeSH
- Homocystinuria diagnosis metabolism therapy MeSH
- Liver drug effects metabolism MeSH
- Lipid Metabolism MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Oxidative Stress MeSH
- Polyethylene Glycols chemistry MeSH
- Drug Evaluation, Preclinical MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Amino Acids, Sulfur MeSH
- Cystathionine beta-Synthase MeSH
- Glucose MeSH
- Polyethylene Glycols MeSH