Nejvíce citovaný článek - PubMed ID 28501103
mRNA decay is regulated via sequestration of the conserved 5'-3' exoribonuclease Xrn1 at eisosome in yeast
UNLABELLED: The plasma membrane is critical for the virulence of the human fungal pathogen Candida albicans. In addition to functioning as a protective barrier, the plasma membrane plays dynamic roles in a wide range of functions needed for virulence including nutrient uptake, cell wall synthesis, morphogenesis, resistance to stress, and invasive hyphal growth. Screening a collection of C. albicans mutants identified an understudied gene that is important for invasive hyphal growth, which we have termed CWR1 (Cell Wall Regulatory kinase). A mutant strain lacking CWR1 displayed defects in resisting stressful conditions that exacerbate cell wall defects. The Cwr1 protein shows strong similarity to protein kinases, suggesting it plays a regulatory role in coordinating plasma membrane and cell wall functions. A Cwr1-green fluorescent protein (GFP) fusion protein localized to punctate patches associated with the plasma membrane that partially overlapped Membrane Compartment of Can1 (MCC)/eisosome domains. In contrast to the static MCC/eisosome domains, the Cwr1-GFP patches were very dynamic. Truncation mutants lacking C-terminal sequences distal to the protein kinase domain failed to show detectable localization at the plasma membrane. Surprisingly, these mutant strains did not show the defects of a cwr1Δ mutant, suggesting that localization to punctate patches associated with the plasma membrane is not essential for Cwr1 function. Altogether, these data indicate that Cwr1 contributes to the regulation of plasma membrane functions that promote proper morphogenesis and resistance to cell wall stress, both of which are important for C. albicans virulence. IMPORTANCE: The ability of Candida albicans to grow invasively in the host and resist stress is critical for it to be an effective human pathogen. Identifying the genes that promote these processes is important for developing new strategies to block infection. Therefore, genetic methods were used in this study to identify a novel gene that is needed for invasive growth and stress resistance (Cell Wall Regulatory kinase [CWR1]). Interestingly, the Cwr1 protein localized to punctate patches in the plasma membrane, some of which co-localized with specialized subdomains of the plasma membrane known as eisosomes that are known to promote stress resistance and invasive growth in the host. Thus, these studies identified a novel regulator of traits that are critical for C. albicans pathogenesis.
- Klíčová slova
- C2_04360W, MCC domain, ORF19.4518, Ypl150w, eisosome, eisosomes, hyphal morphogenesis, stress resistance,
- MeSH
- buněčná membrána * metabolismus MeSH
- buněčná stěna * metabolismus genetika MeSH
- Candida albicans * genetika patogenita enzymologie MeSH
- fungální proteiny * genetika metabolismus MeSH
- fyziologický stres * MeSH
- hyfy růst a vývoj genetika MeSH
- proteinkinasy genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny * MeSH
- proteinkinasy MeSH
The regulation of gene expression in eukaryotes relies largely on the action of exoribonucleases, evolutionarily conserved enzymes that digest decapped messenger RNAs in the 5'-3' direction. The activity of Xrn1, the major yeast exoribonuclease, is regulated by targeted changes in its cellular localisation in direct response to the cell's metabolic state. When fermentable carbon sources are available, active Xrn1 is diffusely localised in the cytosol. Upon depletion of these sources, Xrn1 is sequestered at the plasma membrane-associated protein complex, the eisosome, and becomes inactive. Although this phenomenon has been described previously, the molecular mechanisms underlying these changes remain unknown. We report that the binding of Xrn1 to the plasma membrane is subject to glycolytic flux, rather than the availability of a fermentable carbon source, is independent of TORC1 activity and requires the core eisosomal proteins Pil1 and Lsp1. We identify the SH3-like domain of the Xrn1 protein as a putative interaction domain. In addition, we show that when expressed in Saccharomyces cerevisiae, the human orthologue of Xrn1 mirrors its yeast counterpart, i.e., it segregates to the eisosome under conditions of halted glycolysis. Our results not only advance our understanding of Xrn1 regulation but also indicate that this regulatory principle is conserved from yeast to humans.
- Klíčová slova
- Eisosome, Exoribonuclease, Glycolysis, SH3-like domain, Xrn1, Yeast,
- Publikační typ
- časopisecké články MeSH
Fluorescence microscopy images of biological samples contain valuable information but require rigorous analysis for accurate and reliable determination of changes in protein localization, fluorescence intensity, and morphology of the studied objects. Traditionally, cells for microscopy are immobilized using chemicals, which can introduce stress. Analysis often focuses only on colocalization and involves manual segmentation and measurement, which are time-consuming and can introduce bias. Our new workflow addresses these issues by gently immobilizing cells using a small agarose block on a microscope coverslip. This approach is suitable for cell-walled cells (yeast, fungi, plants, bacteria), facilitates their live imaging under conditions close to their natural environment and enables the addition of chemicals during time-lapse experiments. The primary focus of the protocol is on the presented analysis workflow, which is applicable to virtually any cell type-we describe cell segmentation using the Cellpose software followed by automated analysis of a multitude of parameters using custom-written Fiji (ImageJ) macros. The results can be easily processed using the provided R markdown scripts or available graphing software. Our method facilitates unbiased batch analysis of large datasets, improving the efficiency and accuracy of fluorescence microscopy research. The reported sample preparation protocol and Fiji macros were used in our recent publications: Microbiol Spectr (2022), DOI: 10.1128/spectrum.01961-22; Microbiol Spectr (2022), DOI: 10.1128/spectrum.02489-22; J Cell Sci (2023), DOI: 10.1242/jcs.260554.
- Klíčová slova
- Cellpose, Fiji, ImageJ, automated, blinded, cells, data analysis, microscopy, unbiased, yeast,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.
- Klíčová slova
- eisosome, microdomain, plasma membrane, sphingolipid, stress sensor,
- MeSH
- buněčná membrána metabolismus MeSH
- Candida albicans MeSH
- fungální proteiny metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * analýza genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sfingolipidy * analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fungální proteiny MeSH
- NCE102 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny * MeSH
- sfingolipidy * MeSH
Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.
- Klíčová slova
- eisosome, membrane microdomains, sphingolipid metabolism, vacuolar morphology, yeast,
- MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NCE102 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome's proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.
- Klíčová slova
- MCC, eisosome, ergosterol, lipids, microdomain, phosphoinositides, regulation, sphingolipids,
- MeSH
- buněčná membrána metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fungální proteiny chemie metabolismus MeSH
- homeostáza MeSH
- houby metabolismus MeSH
- metabolismus lipidů MeSH
- proteinové domény MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- fungální proteiny MeSH
We summarize current knowledge regarding regulatory functions of long noncoding RNAs (lncRNAs) in yeast, with emphasis on lncRNAs identified recently in yeast colonies and biofilms. Potential regulatory functions of these lncRNAs in differentiated cells of domesticated colonies adapted to plentiful conditions versus yeast colony biofilms are discussed. We show that specific cell types differ in their complements of lncRNA, that this complement changes over time in differentiating upper cells, and that these lncRNAs target diverse functional categories of genes in different cell subpopulations and specific colony types.
- MeSH
- biofilmy růst a vývoj MeSH
- buněčná diferenciace MeSH
- lidé MeSH
- RNA dlouhá nekódující metabolismus MeSH
- Saccharomyces cerevisiae patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- RNA dlouhá nekódující MeSH