Nejvíce citovaný článek - PubMed ID 29139377
Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)
BACKGROUND: Phlebotomus (Larroussius) perniciosus (Diptera: Psychodidae) is the most common and predominant vector of Leishmania infantum in the Western Mediterranean region. Volatile organic compounds (VOCs) produced by vertebrates are important cues affecting the behaviour of blood-feeding insects. Generally, the identification of putative behaviourally active VOCs involves three distinct phases: extraction, chemical characterization and chemoreceptivity evaluation using electrophysiological techniques. Here, we present a simplified gas chromatography-mass spectrometry-electroantennographic detection (GC-MS-EAD) setup adapted for screening bioactive compounds in sand flies, in which the chemical identification and antennal responses are recorded simultaneously. METHODS: The method integrates: (i) a flow-splitter that balances the flow rate of the two outgoing streams, (ii) GC columns with different lengths and diameters in the two sections splitter-MS and splitter-EAD and (iii) an antennal signal amplifier. The GC-MS-EAD analysis was applied to headspace solid-phase microextraction (HS-SPME) extracts from a healthy dog, and antennal responses were recorded in female P. perniciosus sand flies. RESULTS: The canine VOC profile was predominantly composed of aldehydes, with hexanal and nonanal eliciting the strongest antennal responses in P. perniciosus. CONCLUSIONS: This simplified GC-MS-EAD system shows promise for broader application in the study of host-vector interactions. Its use across different host-vector pairs may enhance our understanding of these relationships and inform the development of strategies for integrated vector monitoring and control.
- Klíčová slova
- Leishmania infantum, Electroantennography, HS-SPME, Leishmaniasis, Phlebotominae, Psychodidae, Semiochemicals,
- MeSH
- hmyz - vektory fyziologie chemie MeSH
- mikroextrakce na pevné fázi MeSH
- Phlebotomus * fyziologie chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- psi MeSH
- těkavé organické sloučeniny * analýza MeSH
- tykadla členovců * fyziologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny * MeSH
BACKGROUND: We evaluated various membranes for blood-feeding in nine sand fly species from different genera and subgenera. Most of these species are vectors of human-pathogenic Leishmania, whereas Sergentomyia minuta is a herpetophilic sand fly species and a proven vector of Leishmania (Sauroleishmania) tarentolae. METHODS: Female sand flies were offered blood through a range of membranes (chicken, reptilian, and frog skin; synthetic collagen; pig intestine; and duck foot webbing). Two feeding systems (glass feeder, Hemotek) and different blood sources (human, ovine, avian, and reptilian) were used. Feeding trials were conducted under varying thermal and light conditions to determine the optimal parameters. RESULTS: Among the 4950 female S. minuta tested, only a negligible fraction took a blood meal: 2% of the females fed on avian blood, and 0.2% of the females fed on human blood. In eight other species, the chicken membrane was generally more effective than synthetic membranes or pig intestines. For example, Phlebotomus duboscqi refused synthetic membranes, while Lutzomyia longipalpis and P. perniciosus avoided both synthetic membranes and pig intestines. The most effective membrane was duck foot webbing, with four species feeding more readily through it than through the chicken membrane. Additionally, applying coagulated blood plasma to the outer surface of chicken or synthetic membranes significantly increased feeding rates. CONCLUSIONS: Female S. minuta did not reliably feed on blood through the tested membranes, preventing laboratory infection experiments from confirming their vector competence for human-pathogenic Leishmania. However, for future experimental infections of other sand fly species, duck foot webbing has emerged as an effective membrane, and the application of blood plasma to the exterior of membranes may increase the feeding rates.
- Klíčová slova
- Leishmania, Lutzomyia, Phlebotomus, Sergentomyia minuta, Artificial feeding, Vector competence,
- MeSH
- krev * MeSH
- lidé MeSH
- membrány MeSH
- prasata MeSH
- Psychodidae * fyziologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. METHODS: We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. RESULTS: Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. CONCLUSIONS: Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
The olfactory response of insect vectors such as phlebotomine sand flies is a key facet for investigating their interactions with vertebrate hosts and associated vector-borne pathogens. Such studies are mainly performed by assessing the electrophysiological response and the olfactory behaviour of these arthropods towards volatile organic compounds (VOCs) produced by hosts. Nonetheless, few studies are available for species of the subgenera Lutzomyia and Nyssomyia in South America, leaving a void for Old World sand fly species of the genus Phlebotomus. In this study, we evaluated the olfactory responses of Phlebotomus perniciosus, one of the most important vectors of Leishmania infantum in the Old World. To test the P. perniciosus behavioural response to VOCs, 28 compounds isolated from humans and dogs were assessed using electrophysiological (i.e., electroantennogram, EAG) and behavioural assays (i.e., Y-tube olfactometer). In the EAG trials, 14 compounds (i.e., acetic acid, nonanoic acid, 2-propanol, 2-butanol, pentanal, hexanal, nonanal, trans-2-nonenal, decanal, myrcene, p-cymene, verbenone, 2-ethyl-1-hexanol, and acetonitrile) elicited high antennal responses (i.e., ≥ 0.30 mV) in female sand flies, being those VOCs selected for the behavioural assays. From the 14 compounds tested in the Y-tube olfactometer, nonanal was significantly attractive for P. perniciosus females, whereas myrcene and p-cymene were significantly repellents (p < 0.05). The attraction indexes varied from 0.53 for nonanal (i.e., most attractive) to -0.47 to p-cymene (i.e., most repellent). Overall, our results shed light on the role of olfactory cues routing host seeking behaviour in P. perniciosus, with implications to develop sustainable sand fly monitoring as well as control in leishmaniasis endemic areas.
- MeSH
- chování zvířat účinky léků MeSH
- hmyz - vektory fyziologie účinky léků MeSH
- Leishmania infantum účinky léků fyziologie MeSH
- lidé MeSH
- Phlebotomus * fyziologie účinky léků MeSH
- psi MeSH
- těkavé organické sloučeniny * farmakologie chemie analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- těkavé organické sloučeniny * MeSH
BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various pathogens, mainly Leishmania parasites. In the Old World, the most important genus in term of pathogens transmission is the genus Phlebotomus, which includes many proven or suspected vectors of several Leishmania species, while the genus Sergentomyia remains so far unproven as a vector of human pathogens. Algeria is one of the most affected countries by human leishmaniasis. METHODS: In the present study, an entomological survey was carried out in two provinces, Ghardaïa and Illizi, located in the north and central Sahara, respectively, where cases of human leishmaniasis are recorded. Our goal was to understand the role of the local sand fly species in the transmission of Leishmania parasites and to analyze their blood meal preferences. Collected sand flies were identified by a combination of morphological and molecular approaches that included DNA-barcoding and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein profiling. In addition, female blood meals were analyzed by peptide mass mapping using MALDI-TOF MS. RESULTS: In total, 640 sand fly specimens belonging to Phlebotomus and Sergentomyia genera were collected in the two provinces. Sergentomyia antennata and Se. fallax were most abundant species in Ghardaïa, and Ph. papatasi and Ph. alexandri in Illizi. In addition, a new sand fly species was described in Illizi named Sergentomyia (Sergentomyia) imihra n. sp. Blood meal analysis of the engorged females revealed various mammalian hosts, especially goats, but also humans for Phlebotomus papatasi and Ph. alexandri, suggesting that these vector species are opportunistic feeders. CONCLUSIONS: Integrative approach that combined morphological analysis, sequencing of DNA markers, and protein profiling enabled the recognition and description of a new Sergentomyia species, raising the number of the Algerian sand fly fauna to 27 species. Further sand fly surveillance in the central Sahara is recommended to identify the thus-far unknown males of Se. imihra n. sp.
- Klíčová slova
- Leishmaniasis, Phlebotomus, Sergentomyia, Algeria, Barcode, Blood meal, MALDI-TOF mass spectrometry,
- MeSH
- hmyz - vektory * klasifikace fyziologie parazitologie anatomie a histologie MeSH
- kozy parazitologie MeSH
- Leishmania genetika fyziologie klasifikace MeSH
- leishmanióza přenos MeSH
- lidé MeSH
- Phlebotomus klasifikace anatomie a histologie fyziologie genetika MeSH
- Psychodidae * klasifikace fyziologie anatomie a histologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Alžírsko MeSH
BACKGROUND: Sand fly females require a blood meal to develop eggs. The size of the blood meal is crucial for fecundity and affects the dose of pathogens acquired by females when feeding on infected hosts or during experimental membrane-feeding. METHODS: Under standard laboratory conditions, we compared blood meal volumes taken by females of ten sand fly species from four genera: Phlebotomus, Lutzomyia, Migonomyia, and Sergentomyia. The amount of ingested blood was determined using a haemoglobin assay. Additionally, we weighed unfed sand flies to calculate the ratio between body weight and blood meal weight. RESULTS: The mean blood meal volume ingested by sand fly females ranged from 0.47 to 1.01 µl. Five species, Phlebotomus papatasi, P. duboscqi, Lutzomyia longipalpis, Sergentomyia minuta, and S. schwetzi, consumed about double the blood meal size compared to Migonomyia migonei. The mean body weight of females ranged from 0.183 mg in S. minuta to 0.369 mg in P. duboscqi. In males, the mean body weight ranged from 0.106 mg in M. migonei to 0.242 mg in P. duboscqi. Males were always lighter than females, with the male-to-female weight ratio ranging from 75% (in Phlebotomus argentipes) to 52% (in Phlebotomus tobbi). CONCLUSIONS: Females of most species took a blood meal 2.25-3.05 times their body weight. Notably, the relatively tiny females of P. argentipes consumed blood meals 3.34 times their body weight. The highest (Mbl/Mf) ratios were found in both Sergentomyia species studied; females of S. minuta and S. schwetzi took blood meals 4.5-5 times their body weight. This parameter is substantially higher than that reported for mosquitoes and biting midges.
- Klíčová slova
- Lutzomyia, Phlebotomus, Sergentomyia, Blood meal, Haemoglobin, Prediuresis,
- MeSH
- krev MeSH
- Phlebotomus fyziologie MeSH
- Psychodidae * fyziologie MeSH
- stravovací zvyklosti * MeSH
- tělesná hmotnost * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.
- MeSH
- deep learning * MeSH
- entomologie MeSH
- Phlebotomus * parazitologie MeSH
- Psychodidae * parazitologie MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. METHODS RESULTS AND DISCUSSION: In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. CONCLUSIONS: Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
- Klíčová slova
- SHP-2, immunity, protein-tyrosine phosphatase, sand fly, signaling pathway, vector-parasite interaction,
- MeSH
- imunosupresivní léčba MeSH
- kultivační média speciální MeSH
- Leishmania infantum * MeSH
- leishmanióza * MeSH
- Phlebotomus * MeSH
- Psychodidae * MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média speciální MeSH
Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.
- Klíčová slova
- Leishmania, defensin, gut-specific response, insect immunity, sand fly,
- Publikační typ
- časopisecké články MeSH
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
- Klíčová slova
- Bangladesh, IgG antibodies, Leishmania donovani, Marker of exposure, Phlebotomus argentipes, Salivary glands,
- MeSH
- hmyzí proteiny * imunologie MeSH
- kousnutí a bodnutí epidemiologie MeSH
- Leishmania donovani MeSH
- lidé MeSH
- Phlebotomus * MeSH
- slinné proteiny a peptidy * imunologie MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bangladéš epidemiologie MeSH
- Názvy látek
- hmyzí proteiny * MeSH
- slinné proteiny a peptidy * MeSH